Classification of Alzheimer's Dementia vs. Healthy subjects by studying structural disparities in fMRI Time-Series of DMN
- URL: http://arxiv.org/abs/2407.19990v1
- Date: Mon, 29 Jul 2024 13:22:49 GMT
- Title: Classification of Alzheimer's Dementia vs. Healthy subjects by studying structural disparities in fMRI Time-Series of DMN
- Authors: Sneha Noble, Chakka Sai Pradeep, Neelam Sinha, Thomas Gregor Issac,
- Abstract summary: Time series from different regions of interest can reveal significant differences between healthy and unhealthy people.
The hypothesis is that differences in the level of structure in the time series can lead to discrimination between subject groups.
An autoencoder-based model is utilized to learn efficient representations of data by training the network to reconstruct its input data.
- Score: 4.349838917565205
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Time series from different regions of interest (ROI) of default mode network (DMN) from Functional Magnetic Resonance Imaging (fMRI) can reveal significant differences between healthy and unhealthy people. Here, we propose the utility of an existing metric quantifying the lack/presence of structure in a signal called, "deviation from stochasticity" (DS) measure to characterize resting-state fMRI time series. The hypothesis is that differences in the level of structure in the time series can lead to discrimination between the subject groups. In this work, an autoencoder-based model is utilized to learn efficient representations of data by training the network to reconstruct its input data. The proposed methodology is applied on fMRI time series of 50 healthy individuals and 50 subjects with Alzheimer's Disease (AD), obtained from publicly available ADNI database. DS measure for healthy fMRI as expected turns out to be different compared to that of AD. Peak classification accuracy of 95% was obtained using Gradient Boosting classifier, using the DS measure applied on 100 subjects.
Related papers
- Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns.
This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions.
arXiv Detail & Related papers (2024-08-20T13:11:43Z) - Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease [0.0]
We train a novel architecture to build a latent space distribution which can be sampled from to generate future predictions of changing anatomy.
By comparing to several alternatives, we show that our model produces more individualized images with higher resolution.
arXiv Detail & Related papers (2024-08-04T13:09:06Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - MCI Detection using fMRI time series embeddings of Recurrence plots [5.340644246815989]
We study the underlying dynamics at ear-marked Regions of Interest (ROIs) to understand structure or lack thereof.
This differential behavior could be key to understanding the neurodegeneration and also to classify between healthy and Mild Cognitive Impairment (MCI) subjects.
In this study, we consider 6 brain networks spanning over 160 ROIs derived from Dosenbach template, where each network consists of 25-30 ROIs.
arXiv Detail & Related papers (2023-11-30T05:57:50Z) - Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI [7.9283612449524155]
A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF)
measurement variabilities (e.g., inter- and intra-site variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI.
Most existing model-based methods (e.g., constrained spherical deconvolution (CSD)) and learning based methods (e.g., deep learning (DL)) do not explicitly consider such variabilities in fODF modeling.
We propose a novel data-driven deep constrained spherical deconvolution method to
arXiv Detail & Related papers (2023-06-05T14:06:40Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Learning Multitask Gaussian Bayesian Networks [11.745963019193955]
Major depressive disorder (MDD) requires study of brain functional connectivity alterations for patients.
The amount of data collected during an fMRI scan is too limited to provide sufficient information for individual analysis.
We propose a multitask Gaussian Bayesian network framework capable for identifying individual disease-induced alterations for MDD patients.
arXiv Detail & Related papers (2022-05-11T08:38:00Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
We propose a new benchmark for federated domain translation on unsupervised brain image synthesis (termed as FedMed-GAN)
FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators.
A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods.
arXiv Detail & Related papers (2022-01-22T02:50:29Z) - Federated Deep AUC Maximization for Heterogeneous Data with a Constant
Communication Complexity [77.78624443410216]
We propose improved FDAM algorithms for detecting heterogeneous chest data.
A result of this paper is that the communication of the proposed algorithm is strongly independent of the number of machines and also independent of the accuracy level.
Experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets and on medical chest Xray images from different organizations.
arXiv Detail & Related papers (2021-02-09T04:05:19Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.