F-KANs: Federated Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2407.20100v2
- Date: Tue, 30 Jul 2024 11:27:55 GMT
- Title: F-KANs: Federated Kolmogorov-Arnold Networks
- Authors: Engin Zeydan, Cristian J. Vaca-Rubio, Luis Blanco, Roberto Pereira, Marius Caus, Abdullah Aydeger,
- Abstract summary: We present an innovative federated learning (FL) approach that utilizes Kolmogorov-Arnold Networks (KANs) for classification tasks.
The study evaluates the performance of federated KANs compared to traditional Multi-Layer Perceptrons (MLPs) classification task.
- Score: 3.8277268808551512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present an innovative federated learning (FL) approach that utilizes Kolmogorov-Arnold Networks (KANs) for classification tasks. By utilizing the adaptive activation capabilities of KANs in a federated framework, we aim to improve classification capabilities while preserving privacy. The study evaluates the performance of federated KANs (F- KANs) compared to traditional Multi-Layer Perceptrons (MLPs) on classification task. The results show that the F-KANs model significantly outperforms the federated MLP model in terms of accuracy, precision, recall, F1 score and stability, and achieves better performance, paving the way for more efficient and privacy-preserving predictive analytics.
Related papers
- Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Kolmogorov-Arnold Networks (KAN) for Time Series Classification and Robust Analysis [2.978024452652925]
Kolmogorov-Arnold Networks (KAN) has attracted significant attention as a promising alternative to traditional Multi-Layer Perceptrons (MLP)
Despite their theoretical appeal, KAN require validation on large-scale benchmark datasets.
arXiv Detail & Related papers (2024-08-14T06:15:55Z) - Kolmogorov-Arnold Network for Online Reinforcement Learning [0.22615818641180724]
Kolmogorov-Arnold Networks (KANs) have shown potential as an alternative to Multi-Layer Perceptrons (MLPs) in neural networks.
KANs provide universal function approximation with fewer parameters and reduced memory usage.
arXiv Detail & Related papers (2024-08-09T03:32:37Z) - Enhancing Fast Feed Forward Networks with Load Balancing and a Master Leaf Node [49.08777822540483]
Fast feedforward networks (FFFs) exploit the observation that different regions of the input space activate distinct subsets of neurons in wide networks.
We propose the incorporation of load balancing and Master Leaf techniques into the FFF architecture to improve performance and simplify the training process.
arXiv Detail & Related papers (2024-05-27T05:06:24Z) - Smooth Kolmogorov Arnold networks enabling structural knowledge representation [0.0]
Kolmogorov-Arnold Networks (KANs) offer an efficient and interpretable alternative to traditional multi-layer perceptron (MLP) architectures.
By leveraging inherent structural knowledge, KANs may reduce the data required for training and mitigate the risk of generating hallucinated predictions.
arXiv Detail & Related papers (2024-05-18T15:27:14Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
We introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices.
We conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency.
arXiv Detail & Related papers (2022-12-14T13:57:01Z) - FedControl: When Control Theory Meets Federated Learning [63.96013144017572]
We distinguish client contributions according to the performance of local learning and its evolution.
The technique is inspired from control theory and its classification performance is evaluated extensively in IID framework.
arXiv Detail & Related papers (2022-05-27T21:05:52Z) - An Evaluation Study of Generative Adversarial Networks for Collaborative
Filtering [75.83628561622287]
This work successfully replicates the results published in the original paper and discusses the impact of certain differences between the CFGAN framework and the model used in the original evaluation.
The work further expands the experimental analysis comparing CFGAN against a selection of simple and well-known properly optimized baselines, observing that CFGAN is not consistently competitive against them despite its high computational cost.
arXiv Detail & Related papers (2022-01-05T20:53:27Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.