論文の概要: Quantum Machine Learning Architecture Search via Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2407.20147v1
- Date: Mon, 29 Jul 2024 16:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:05:24.779747
- Title: Quantum Machine Learning Architecture Search via Deep Reinforcement Learning
- Title(参考訳): 深層強化学習による量子機械学習アーキテクチャ探索
- Authors: Xin Dai, Tzu-Chieh Wei, Shinjae Yoo, Samuel Yen-Chi Chen,
- Abstract要約: 教師付き学習タスクに適した有能なQMLモデルアーキテクチャを探索するために、深層強化学習を導入する。
我々の手法は、所定のアンザッツを使わずにQMLモデルの発見を容易にするポリシーを考案するために、RLエージェントを訓練することを含む。
提案手法は,ゲート深さを最小化しながら高い分類精度を達成できるVQCアーキテクチャの同定に成功している。
- 参考スコア(独自算出の注目度): 8.546707309430593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of quantum computing (QC) and machine learning (ML) has given rise to the burgeoning field of quantum machine learning (QML), aiming to capitalize on the strengths of quantum computing to propel ML forward. Despite its promise, crafting effective QML models necessitates profound expertise to strike a delicate balance between model intricacy and feasibility on Noisy Intermediate-Scale Quantum (NISQ) devices. While complex models offer robust representation capabilities, their extensive circuit depth may impede seamless execution on extant noisy quantum platforms. In this paper, we address this quandary of QML model design by employing deep reinforcement learning to explore proficient QML model architectures tailored for designated supervised learning tasks. Specifically, our methodology involves training an RL agent to devise policies that facilitate the discovery of QML models without predetermined ansatz. Furthermore, we integrate an adaptive mechanism to dynamically adjust the learning objectives, fostering continuous improvement in the agent's learning process. Through extensive numerical simulations, we illustrate the efficacy of our approach within the realm of classification tasks. Our proposed method successfully identifies VQC architectures capable of achieving high classification accuracy while minimizing gate depth. This pioneering approach not only advances the study of AI-driven quantum circuit design but also holds significant promise for enhancing performance in the NISQ era.
- Abstract(参考訳): 量子コンピューティング(QC)と機械学習(ML)の急速な進歩により、量子機械学習(QML)の急成長する分野が生まれ、量子コンピューティングの強みを活かしてMLを前進させた。
その約束にもかかわらず、効果的なQMLモデルを作成するには、モデル複雑度とNISQ(Noisy Intermediate-Scale Quantum)デバイスへの実現可能性の間の微妙なバランスを取る必要がある。
複雑なモデルは堅牢な表現能力を提供するが、その広範な回路深度は、現存する雑音量子プラットフォーム上でのシームレスな実行を妨げる可能性がある。
本稿では, 教師付き学習タスクに適した有能なQMLモデルアーキテクチャを探索するために, 深層強化学習を用いたQMLモデル設計の第4四半期について述べる。
具体的には、RLエージェントを訓練して、所定のアンザッツを使わずにQMLモデルの発見を容易にするポリシーを策定する。
さらに,学習目標を動的に調整する適応的なメカニズムを統合し,エージェントの学習プロセスの継続的な改善を促進する。
広範囲な数値シミュレーションを通して、分類タスクの領域における我々のアプローチの有効性について説明する。
提案手法は,ゲート深さを最小化しながら高い分類精度を達成できるVQCアーキテクチャの同定に成功している。
この先駆的なアプローチは、AI駆動の量子回路設計の研究を前進させるだけでなく、NISQ時代のパフォーマンス向上にも大きな可能性を秘めている。
関連論文リスト
- Learning to Measure Quantum Neural Networks [10.617463958884528]
本稿では,量子系の可観測性,特にエルミート行列学習性を実現する新しい手法を提案する。
本手法では,パラメータ化可観測関数を通常の量子回路パラメータとともに学習するエンド・ツー・エンドの微分可能学習フレームワークを特徴とする。
数値シミュレーションにより,提案手法は変動量子回路の観測値の同定が可能であり,その結果が得られた。
論文 参考訳(メタデータ) (2025-01-10T02:28:19Z) - A learning agent-based approach to the characterization of open quantum systems [0.0]
我々は,オープンな量子モデル学習エージェント (oQMLA) フレームワークを導入し,Louvillianフォーマリズムによるマルコフ雑音を考慮した。
ハミルトン作用素とジャンプ作用素を同時に学習することにより、oQMLAは独立に系のコヒーレント力学と非コヒーレント力学の両方を捉える。
複雑化のシミュレーションシナリオにおける本実装の有効性を検証し,ハードウェアによる測定誤差に対するロバスト性を示す。
論文 参考訳(メタデータ) (2025-01-09T16:25:17Z) - Evolutionary Optimization for Designing Variational Quantum Circuits with High Model Capacity [3.6881738506505988]
高性能量子機械学習(QML)モデルの設計には、専門家レベルの知識が必要である。
主な課題は、データ符号化機構とパラメータ化量子回路の設計である。
本稿では,量子回路設計の進化を可能にするために,量子回路アーキテクチャ情報を符号化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-17T02:40:35Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Challenges for Reinforcement Learning in Quantum Circuit Design [8.894627352356302]
ハイブリッド量子機械学習(QML)は、機械学習(ML)を改善するためのQCの応用と、QCアーキテクチャを改善するためのMLの両方を含む。
我々はマルコフ決定過程として定式化された具体的なフレームワークであるqcd-gymを提案し、連続パラメータ化された量子ゲートの普遍的なセットを制御することができる学習ポリシーを実現する。
論文 参考訳(メタデータ) (2023-12-18T16:41:30Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。