論文の概要: Learning to Measure Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2501.05663v1
- Date: Fri, 10 Jan 2025 02:28:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:28:46.762857
- Title: Learning to Measure Quantum Neural Networks
- Title(参考訳): 量子ニューラルネットワークの学習
- Authors: Samuel Yen-Chi Chen, Huan-Hsin Tseng, Hsin-Yi Lin, Shinjae Yoo,
- Abstract要約: 本稿では,量子系の可観測性,特にエルミート行列学習性を実現する新しい手法を提案する。
本手法では,パラメータ化可観測関数を通常の量子回路パラメータとともに学習するエンド・ツー・エンドの微分可能学習フレームワークを特徴とする。
数値シミュレーションにより,提案手法は変動量子回路の観測値の同定が可能であり,その結果が得られた。
- 参考スコア(独自算出の注目度): 10.617463958884528
- License:
- Abstract: The rapid progress in quantum computing (QC) and machine learning (ML) has attracted growing attention, prompting extensive research into quantum machine learning (QML) algorithms to solve diverse and complex problems. Designing high-performance QML models demands expert-level proficiency, which remains a significant obstacle to the broader adoption of QML. A few major hurdles include crafting effective data encoding techniques and parameterized quantum circuits, both of which are crucial to the performance of QML models. Additionally, the measurement phase is frequently overlooked-most current QML models rely on pre-defined measurement protocols that often fail to account for the specific problem being addressed. We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable. Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters simultaneously. Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes, such as higher classification accuracy, thereby boosting the overall performance of QML models.
- Abstract(参考訳): 量子コンピューティング(QC)と機械学習(ML)の急速な進歩が注目され、多種多様な複雑な問題を解決するために量子機械学習(QML)アルゴリズムに関する広範な研究が進められた。
高性能QMLモデルの設計には専門家レベルの習熟が必要であるが、QMLの広範な採用には大きな障害が残っている。
いくつかの大きなハードルには、効率的なデータエンコーディング技術とパラメータ化された量子回路の製作が含まれており、どちらもQMLモデルの性能に不可欠である。
さらに、測定フェーズはしばしば見過ごされがちで、現在のQMLモデルは事前に定義された測定プロトコルに依存しており、対処されている特定の問題を考慮できないことが多い。
本稿では,量子系の可観測性,特にエルミート行列学習性を実現する新しい手法を提案する。
本手法は,パラメータ化可観測関数を通常の量子回路パラメータとともに同時にトレーニングするエンド・ツー・エンドの微分可能学習フレームワークを特徴とする。
数値シミュレーションにより,QMLモデルの全体的な性能を向上し,より高い分類精度などの結果をもたらす変動量子回路の観測可能点を同定できることを示す。
関連論文リスト
- Evolutionary Optimization for Designing Variational Quantum Circuits with High Model Capacity [3.6881738506505988]
高性能量子機械学習(QML)モデルの設計には、専門家レベルの知識が必要である。
主な課題は、データ符号化機構とパラメータ化量子回路の設計である。
本稿では,量子回路設計の進化を可能にするために,量子回路アーキテクチャ情報を符号化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-17T02:40:35Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Machine Learning Architecture Search via Deep Reinforcement Learning [8.546707309430593]
教師付き学習タスクに適した有能なQMLモデルアーキテクチャを探索するために、深層強化学習を導入する。
我々の手法は、所定のアンザッツを使わずにQMLモデルの発見を容易にするポリシーを考案するために、RLエージェントを訓練することを含む。
提案手法は,ゲート深さを最小化しながら高い分類精度を達成できるVQCアーキテクチャの同定に成功している。
論文 参考訳(メタデータ) (2024-07-29T16:20:51Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Explainable Quantum Machine Learning [0.7046417074932257]
人工知能(AI)や特に機械学習(ML)の手法は、これまで以上に複雑になってきている。
並行して、量子機械学習(QML)が登場し、量子コンピューティングハードウェアの改善が進行中である。
論文 参考訳(メタデータ) (2023-01-22T15:17:12Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。