論文の概要: From pixels to planning: scale-free active inference
- arxiv url: http://arxiv.org/abs/2407.20292v1
- Date: Sat, 27 Jul 2024 14:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 19:18:14.268488
- Title: From pixels to planning: scale-free active inference
- Title(参考訳): ピクセルから計画へ:スケールフリーな能動推論
- Authors: Karl Friston, Conor Heins, Tim Verbelen, Lancelot Da Costa, Tommaso Salvatori, Dimitrije Markovic, Alexander Tschantz, Magnus Koudahl, Christopher Buckley, Thomas Parr,
- Abstract要約: 本稿では、生成的モデリングのための離散状態空間モデルとそれに伴う手法について述べる。
我々は、再正規化群を用いて、深層または階層的な形式を考える。
この技術ノートは、一連のアプリケーションを使用したRGMの自動発見、学習、デプロイを説明している。
- 参考スコア(独自算出の注目度): 42.04471916762639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a discrete state-space model -- and accompanying methods -- for generative modelling. This model generalises partially observed Markov decision processes to include paths as latent variables, rendering it suitable for active inference and learning in a dynamic setting. Specifically, we consider deep or hierarchical forms using the renormalisation group. The ensuing renormalising generative models (RGM) can be regarded as discrete homologues of deep convolutional neural networks or continuous state-space models in generalised coordinates of motion. By construction, these scale-invariant models can be used to learn compositionality over space and time, furnishing models of paths or orbits; i.e., events of increasing temporal depth and itinerancy. This technical note illustrates the automatic discovery, learning and deployment of RGMs using a series of applications. We start with image classification and then consider the compression and generation of movies and music. Finally, we apply the same variational principles to the learning of Atari-like games.
- Abstract(参考訳): 本稿では、生成的モデリングのための離散状態空間モデルとそれに伴う手法について述べる。
このモデルは、部分的に観察されたマルコフ決定過程を、潜在変数としてのパスを含むように一般化し、動的条件下でのアクティブな推論と学習に適している。
具体的には、再正規化群を用いて、深層または階層的な形式を考察する。
続く再正規化生成モデル(RGM)は、運動の一般化座標における深部畳み込みニューラルネットワークまたは連続状態空間モデルの離散ホモログと見なすことができる。
建設によって、これらのスケール不変モデルは、空間と時間における構成性、経路または軌道の編み出しモデル、すなわち時間深度と反復性の増大を学習することができる。
この技術ノートは、一連のアプリケーションを使用したRGMの自動発見、学習、デプロイを説明している。
まず画像分類から始めて,映画や音楽の圧縮と生成について考察する。
最後に,アタリ型ゲームの学習にも同様の変分原理を適用した。
関連論文リスト
- Towards Model-Agnostic Dataset Condensation by Heterogeneous Models [13.170099297210372]
我々は,クロスモデル相互作用により,普遍的に適用可能なコンデンサ画像を生成する新しい手法を開発した。
モデルのコントリビューションのバランスとセマンティックな意味の密接な維持により,本手法は,モデル固有凝縮画像に関連する制約を克服する。
論文 参考訳(メタデータ) (2024-09-22T17:13:07Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
我々はSceNeRFlowを提案し、時間的一貫性のある方法で一般的な非剛体シーンを再構築する。
提案手法は,カメラパラメータを入力として,静止カメラからのマルチビューRGBビデオと背景画像を取得する。
実験により,小規模動作のみを扱う先行作業とは異なり,スタジオスケール動作の再構築が可能であることが示された。
論文 参考訳(メタデータ) (2023-08-16T09:50:35Z) - Structured State Space Models for Multiple Instance Learning in Digital
Pathology [2.7221491938716964]
本稿では,デジタル病理学における様々な問題に対して,状態空間モデルを複数インスタンス学習者として用いることを提案する。
転移検出, 癌サブタイプ, 突然変異分類, マルチタスク学習における実験を通じて, この新しいモデルの競争力を実証した。
論文 参考訳(メタデータ) (2023-06-27T20:38:09Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Discovering Governing Equations from Partial Measurements with Deep
Delay Autoencoders [4.446017969073817]
データ駆動モデル発見における中心的な課題は、直接測定されていないが動的に重要な、隠された、あるいは潜在的な変数の存在である。
そこで我々は,遅延埋め込み空間から新しい空間への座標変換を学習するために,独自のディープオートエンコーダネットワークを設計する。
この手法をロレンツ,R"ossler,Lotka-Volterra系で実証し,1つの測定変数から力学を学習する。
論文 参考訳(メタデータ) (2022-01-13T18:48:16Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling [0.0]
本稿では,視覚的スコアリングにおいて専門家が積極的に実施する制約を組み込んだ単一チャネル脳波生成モデルを提案する。
我々は、一般化期待最大化の特別な場合として、正確に、抽出可能な推論のためのアルゴリズムを導出する。
我々は、このモデルを3つの公開データセット上で検証し、より複雑なモデルが最先端の検出器を越えられるように支援する。
論文 参考訳(メタデータ) (2020-10-16T21:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。