論文の概要: From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2407.20361v1
- Date: Mon, 29 Jul 2024 18:21:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:58:28.626777
- Title: From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks
- Title(参考訳): MLからLLMへ:敵攻撃に対するフィッシングWebページ検出モデルのロバスト性の評価
- Authors: Aditya Kulkarni, Vivek Balachandran, Dinil Mon Divakaran, Tamal Das,
- Abstract要約: フィッシング攻撃は、ユーザーを騙して機密情報を盗もうとする。
現在のフィッシングWebページ検出ソリューションは、敵攻撃に対して脆弱である。
我々は,多様なフィッシング機能を正当なWebページに埋め込むことで,逆フィッシングWebページを生成するツールを開発した。
- 参考スコア(独自算出の注目度): 0.8050163120218178
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Phishing attacks attempt to deceive users into stealing sensitive information, posing a significant cybersecurity threat. Advances in machine learning (ML) and deep learning (DL) have led to the development of numerous phishing webpage detection solutions, but these models remain vulnerable to adversarial attacks. Evaluating their robustness against adversarial phishing webpages is essential. Existing tools contain datasets of pre-designed phishing webpages for a limited number of brands, and lack diversity in phishing features. To address these challenges, we develop PhishOracle, a tool that generates adversarial phishing webpages by embedding diverse phishing features into legitimate webpages. We evaluate the robustness of two existing models, Stack model and Phishpedia, in classifying PhishOracle-generated adversarial phishing webpages. Additionally, we study a commercial large language model, Gemini Pro Vision, in the context of adversarial attacks. We conduct a user study to determine whether PhishOracle-generated adversarial phishing webpages deceive users. Our findings reveal that many PhishOracle-generated phishing webpages evade current phishing webpage detection models and deceive users, but Gemini Pro Vision is robust to the attack. We also develop the PhishOracle web app, allowing users to input a legitimate URL, select relevant phishing features and generate a corresponding phishing webpage. All resources are publicly available on GitHub.
- Abstract(参考訳): フィッシング攻撃は、ユーザーを騙して機密情報を盗み、重大なサイバーセキュリティの脅威を引き起こす。
機械学習(ML)とディープラーニング(DL)の進歩は多くのフィッシングWebページ検出ソリューションの開発につながっているが、これらのモデルは敵の攻撃に弱いままである。
敵のフィッシングページに対する堅牢性を評価することが不可欠である。
既存のツールには、ブランド数限定で事前設計されたフィッシングWebページのデータセットが含まれており、フィッシング機能の多様性が欠如している。
これらの課題に対処するために、さまざまなフィッシング機能を正当なWebページに埋め込むことで、敵対的なフィッシングWebページを生成するツールであるPhishOracleを開発した。
We evaluate the robustness of two existing model, Stack model and Phishpedia, in classification of PhishOracle generated adversarial phishing webpages。
さらに,敵対的攻撃の文脈において,商業用大規模言語モデルであるGemini Pro Visionについて検討した。
我々は,PhishOracleが生成した逆フィッシングWebページがユーザを欺くかどうかを判断するために,ユーザスタディを実施している。
我々の発見によると、多くのPhishOracleが生成したフィッシングWebページが、現在のフィッシングWebページ検出モデルや騙しユーザーを回避しているが、Gemini Pro Visionは攻撃に対して堅牢である。
また、PhishOracle Webアプリを開発し、ユーザーが正当なURLを入力し、関連するフィッシング機能を選択し、対応するフィッシングWebページを生成する。
すべてのリソースはGitHubで公開されている。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - NoPhish: Efficient Chrome Extension for Phishing Detection Using Machine Learning Techniques [0.0]
「NoPhish」は、いくつかの機械学習技術に基づいてフィッシングWebページを識別する。
トレーニングデータセットを"PhishTank"から使い、22の人気のある特徴を抽出しました。
結果からランダムフォレストが最も精度が高いことが示唆された。
論文 参考訳(メタデータ) (2024-09-01T18:59:14Z) - TrojFM: Resource-efficient Backdoor Attacks against Very Large Foundation Models [69.37990698561299]
TrojFMは、非常に大きな基礎モデルに適した、新しいバックドア攻撃である。
提案手法では,モデルパラメータのごく一部のみを微調整することでバックドアを注入する。
広範に使われている大規模GPTモデルに対して,TrojFMが効果的なバックドアアタックを起動できることを実証する。
論文 参考訳(メタデータ) (2024-05-27T03:10:57Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
フェデレートされた自己教師付き学習(FSSL)は、クライアントの膨大な量の未ラベルデータの利用を可能にする、有望なパラダイムとして登場した。
FSSLはアドバンテージを提供するが、バックドア攻撃に対する感受性は調査されていない。
ローカルモデルの埋め込み空間を検査し,悪意のあるクライアントを検知する埋め込み検査器(EmInspector)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:14:49Z) - "Are Adversarial Phishing Webpages a Threat in Reality?" Understanding the Users' Perception of Adversarial Webpages [21.474375992224633]
機械学習ベースのフィッシングWebサイト検出器(ML-PWD)は、現在運用中のアンチフィッシングソリューションの重要な部分である。
敵のフィッシングはユーザとML-PWDの両方にとって脅威であることを示す。
また,ブランドウェブサイトを訪問する利用者の自己申告頻度は,フィッシング検出精度と統計的に負の相関があることを示した。
論文 参考訳(メタデータ) (2024-04-03T16:10:17Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
フィッシングはよく知られたサイバー攻撃であり、フィッシングウェブページの作成と対応するURLの拡散を中心に展開している。
独自の属性を蒸留し、予測モデルを構築することで、ゼロデイフィッシングURLをプリエンプティブに分類する様々な技術が利用可能である。
この提案は、フィッシング検出ソリューション内の永続的な課題、特に包括的なデータセットを組み立てる予備フェーズに集中している。
本稿では,MLモデルのバイアスを軽減するために開発されたツールの形で,潜在的な解決策を提案する。
論文 参考訳(メタデータ) (2024-01-16T13:45:54Z) - "Do Users fall for Real Adversarial Phishing?" Investigating the Human response to Evasive Webpages [7.779975012737389]
最先端のソリューションでは、有名なブランドのWebページと視覚的に似ているかどうかをチェックすることによって、フィッシングサイトを検出する機械学習の適用が求められる。
一部のセキュリティ企業はフィッシング検知システム(PDS)にも導入し始めた。
本稿では、「商用MLベースのPSD」を回避する「総合的なフィッシングサイト」が「現実」の問題であるかどうかを精査する。
論文 参考訳(メタデータ) (2023-11-28T00:08:48Z) - Detecting Phishing Sites -- An Overview [0.0]
フィッシングは、研究者が解決策を見つけようとする最も厳しいサイバー攻撃の1つだ。
フィッシングによるダメージを最小限に抑えるためには、できるだけ早く検出する必要がある。
ホワイトリスト、ブラックリスト、コンテンツベース、URLベース、ビジュアル類似性、機械学習に基づくさまざまなフィッシング検出技術がある。
論文 参考訳(メタデータ) (2021-03-23T19:16:03Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。