論文の概要: Experimental quantum-enhanced kernels on a photonic processor
- arxiv url: http://arxiv.org/abs/2407.20364v1
- Date: Mon, 29 Jul 2024 18:26:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:58:28.623799
- Title: Experimental quantum-enhanced kernels on a photonic processor
- Title(参考訳): フォトニックプロセッサ上の量子増幅核の実験的研究
- Authors: Zhenghao Yin, Iris Agresti, Giovanni de Felice, Douglas Brown, Alexis Toumi, Ciro Pentangelo, Simone Piacentini, Andrea Crespi, Francesco Ceccarelli, Roberto Osellame, Bob Coecke, Philip Walther,
- Abstract要約: フォトニック集積プロセッサ上でバイナリ分類を行うカーネル手法を実証する。
本プロトコルはガウス的カーネルやニューラルタンジェントカーネルなど,最先端のカーネル手法よりも優れていることを示す。
我々の方式ではゲートを絡める必要はなく、追加モードや光子を注入することでシステム次元を変更できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, machine learning had a remarkable impact, from scientific to everyday-life applications. However, complex tasks often imply unfeasible energy and computational power consumption. Quantum computation might lower such requirements, although it is unclear whether enhancements are reachable by current technologies. Here, we demonstrate a kernel method on a photonic integrated processor to perform a binary classification. We show that our protocol outperforms state-of-the-art kernel methods including gaussian and neural tangent kernels, exploiting quantum interference, and brings a smaller improvement also by single photon coherence. Our scheme does not require entangling gates and can modify the system dimension through additional modes and injected photons. This result opens to more efficient algorithms and to formulating tasks where quantum effects improve standard methods.
- Abstract(参考訳): 近年、機械学習は科学的な応用から日常的な応用まで、顕著な影響を与えている。
しかし、複雑なタスクはしばしば、エネルギーと計算力の消費が不可能なことを暗示する。
量子計算はそのような要件を低くする可能性があるが、現在の技術で拡張が到達可能かどうかは不明である。
本稿では、フォトニック集積プロセッサ上でバイナリ分類を行うカーネル手法を実証する。
我々のプロトコルはガウスカーネルやニューラルタンジェントカーネルなど最先端のカーネル手法より優れており、量子干渉を利用しており、単一光子コヒーレンスによる改善も少ないことを示す。
我々の方式ではゲートを絡める必要はなく、追加モードや光子を注入することでシステム次元を変更できる。
この結果は、より効率的なアルゴリズムと、量子効果が標準的な方法を改善するタスクの定式化に開放される。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Photon Number-Resolving Quantum Reservoir Computing [1.1274582481735098]
本稿では,光子数分解による出力状態の検出で実現可能な光量子貯水池計算のための固定光ネットワークを提案する。
これは、高次元ヒルベルト空間にアクセスしながら入力量子状態に必要な複雑さを著しく減少させる。
論文 参考訳(メタデータ) (2024-02-09T11:28:37Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - A general-purpose single-photon-based quantum computing platform [36.56899230501635]
本報告では,単一光子を用いたユーザ可読な汎用量子コンピューティングのプロトタイプについて報告する。
再構成可能なチップ上に、普遍線形光ネットワークを供給する高効率量子ドット単光子源を備える。
我々は、計測ベースの量子コンピューティングに向けた重要なマイルストーンである3光子エンタングルメント生成について報告する。
論文 参考訳(メタデータ) (2023-06-01T16:35:55Z) - Efficient qudit based scheme for photonic quantum computing [0.0]
本研究は,d>2光モードにおける単一光子の光子数状態によって定義される量子量について検討する。
線形光学と光子数分解検出器を用いて局所最適非決定性多量子ゲートを構築する方法を示す。
我々は、quditクラスタ状態は、光学モードを少なくし、類似の計算能力を持つqubitクラスタ状態よりも、絡み合った光子が少なく符号化されていることを発見した。
論文 参考訳(メタデータ) (2023-02-14T21:41:45Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
我々は、光子を媒介とする効果的なスピン-1系間の相互作用に、光遷移を持つマルチレベルエミッタを利用する方法を示す。
本結果は,空洞QEDおよび量子ナノフォトニクス装置で利用可能な量子シミュレーションツールボックスを拡張した。
論文 参考訳(メタデータ) (2022-06-03T14:52:34Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Quantum tangent kernel [0.8921166277011345]
本研究では,パラメータ化量子回路を用いた量子機械学習モデルについて検討する。
深層量子回路のパラメータは、トレーニング中に初期値からあまり移動しないことがわかった。
このような深い変動量子機械学習は、別の創発的カーネルである量子タンジェントカーネルによって記述することができる。
論文 参考訳(メタデータ) (2021-11-04T15:38:52Z) - Fock State-enhanced Expressivity of Quantum Machine Learning Models [0.0]
フォトニックベースのボソニックデータエンコーディングスキームは、より少ないエンコーディング層を使用して古典的なデータポイントを埋め込む。
本稿では,必要なリソースのスケールの異なる3つの異なる雑音性中間スケール量子互換バイナリ分類法を提案する。
論文 参考訳(メタデータ) (2021-07-12T07:07:39Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
集積フォトニクスは優れた位相安定性を提供し、半導体産業によって提供される大規模な製造性に依存することができる。
このような光回路に基づく新しいデバイスは、機械学習アプリケーションにおいて高速でエネルギー効率の高い計算を約束する。
線形光ネットワークの転送行列を再構成する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-01T16:04:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。