A federated large language model for long-term time series forecasting
- URL: http://arxiv.org/abs/2407.20503v1
- Date: Tue, 30 Jul 2024 02:38:27 GMT
- Title: A federated large language model for long-term time series forecasting
- Authors: Raed Abdel-Sater, A. Ben Hamza,
- Abstract summary: We propose FedTime, a federated large language model (LLM) tailored for long-range time series prediction.
We employ K-means clustering to partition edge devices or clients into distinct clusters.
We also incorporate channel independence and patching to better preserve local semantic information.
- Score: 4.696083734269233
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Long-term time series forecasting in centralized environments poses unique challenges regarding data privacy, communication overhead, and scalability. To address these challenges, we propose FedTime, a federated large language model (LLM) tailored for long-range time series prediction. Specifically, we introduce a federated pre-trained LLM with fine-tuning and alignment strategies. Prior to the learning process, we employ K-means clustering to partition edge devices or clients into distinct clusters, thereby facilitating more focused model training. We also incorporate channel independence and patching to better preserve local semantic information, ensuring that important contextual details are retained while minimizing the risk of information loss. We demonstrate the effectiveness of our FedTime model through extensive experiments on various real-world forecasting benchmarks, showcasing substantial improvements over recent approaches. In addition, we demonstrate the efficiency of FedTime in streamlining resource usage, resulting in reduced communication overhead.
Related papers
- FedDTPT: Federated Discrete and Transferable Prompt Tuning for Black-Box Large Language Models [14.719919025265224]
Fine-tuning large language models (LLMs) with data from specific scenarios poses privacy leakage risks.
We propose for the first time a federated discrete and transferable prompt tuning, namely FedDTPT, for black-box large language models.
Our approach achieves higher accuracy, reduced communication overhead, and robustness to non-iid data in a black-box setting.
arXiv Detail & Related papers (2024-11-01T19:19:23Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
patio-temporal forecasting is crucial in transportation, logistics, and supply chain management.
We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models.
Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security.
arXiv Detail & Related papers (2024-08-24T16:32:58Z) - FedLog: Personalized Federated Classification with Less Communication and More Flexibility [24.030147353437382]
Federated representation learning (FRL) aims to learn personalized federated models with effective feature extraction from local data.
To reduce the overhead, we propose to share sufficient data summaries instead of raw model parameters.
arXiv Detail & Related papers (2024-07-11T09:40:29Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Share Your Secrets for Privacy! Confidential Forecasting with Vertical Federated Learning [5.584904689846748]
Key challenges to address in manufacturing include data privacy and over-fitting on small and noisy datasets.
We propose 'Secret-shared Time Series Forecasting with VFL', a novel framework that exhibits the following key features.
Our results demonstrate that STV's forecasting accuracy is comparable to those of centralized approaches.
arXiv Detail & Related papers (2024-05-31T12:27:38Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.