論文の概要: Pyramid Coder: Hierarchical Code Generator for Compositional Visual Question Answering
- arxiv url: http://arxiv.org/abs/2407.20563v1
- Date: Tue, 30 Jul 2024 05:36:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:19:06.879133
- Title: Pyramid Coder: Hierarchical Code Generator for Compositional Visual Question Answering
- Title(参考訳): ピラミッドコーダ:構成的視覚質問応答のための階層型コードジェネレータ
- Authors: Ruoyue Shen, Nakamasa Inoue, Koichi Shinoda,
- Abstract要約: 視覚的質問応答(VQA)とは、視覚的な入力に基づいて、自然言語の質問に対して正確な回答を提供するタスクである。
本稿ではPVQAモデルのための新しいプロンプトフレームワークであるPraamidCoderを紹介する。
我々の手法は最先端のPVQAモデルと比較して、GQAデータセットで少なくとも0.5%、VQAv2データセットで1.4%、NLVR2データセットで2.9%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 12.399738382728653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual question answering (VQA) is the task of providing accurate answers to natural language questions based on visual input. Programmatic VQA (PVQA) models have been gaining attention recently. These use large language models (LLMs) to formulate executable programs that address questions requiring complex visual reasoning. However, there are challenges in enabling LLMs to comprehend the usage of image processing modules and generate relevant code. To overcome these challenges, this paper introduces PyramidCoder, a novel prompting framework for PVQA models. PyramidCoder consists of three hierarchical levels, each serving a distinct purpose: query rephrasing, code generation, and answer aggregation. Notably, PyramidCoder utilizes a single frozen LLM and pre-defined prompts at each level, eliminating the need for additional training and ensuring flexibility across various LLM architectures. Compared to the state-of-the-art PVQA model, our approach improves accuracy by at least 0.5% on the GQA dataset, 1.4% on the VQAv2 dataset, and 2.9% on the NLVR2 dataset.
- Abstract(参考訳): 視覚的質問応答(VQA)とは、視覚的な入力に基づいて、自然言語の質問に対して正確な回答を提供するタスクである。
プログラム型VQA(PVQA)モデルは近年注目を集めている。
これらは、複雑な視覚的推論を必要とする問題に対処する実行可能なプログラムを定式化するために、大きな言語モデル(LLM)を使用する。
しかし、LLMが画像処理モジュールの使用を理解でき、関連するコードを生成することは困難である。
これらの課題を克服するために、PVQAモデルのための新しいプロンプトフレームワークであるPraamidCoderを紹介した。
PyramidCoderは3つの階層的なレベルで構成され、それぞれがクエリリフレッシング、コード生成、回答アグリゲーションという、明確な目的を持っている。
特に、MraamidCoderは、単一の凍結LDMと各レベルで事前定義されたプロンプトを使用して、追加のトレーニングの必要性を排除し、さまざまなLLMアーキテクチャの柔軟性を保証する。
我々の手法は最先端のPVQAモデルと比較して、GQAデータセットで少なくとも0.5%、VQAv2データセットで1.4%、NLVR2データセットで2.9%の精度向上を実現している。
関連論文リスト
- SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
社会的関係推論は、友人、配偶者、同僚などの関係カテゴリを画像から識別することを目的としている。
まず、VFM(Vision Foundation Models)の知覚能力と、モジュラーフレームワーク内でのLLM(Large Language Models)の推論能力を組み合わせた、シンプルだが巧妙な名前のフレームワークを提示する。
論文 参考訳(メタデータ) (2024-10-28T18:10:26Z) - Distill Visual Chart Reasoning Ability from LLMs to MLLMs [38.62832112530892]
マルチモーダル大言語モデル(MLLM)における複雑なチャートQ&Aタスクの解決には高度な視覚的推論能力が必要である
我々は,LLMからMLLMへの視覚的推論能力を蒸留するための費用効率,効率的,スケーラブルなデータ合成法であるCode-as-Intermediary Translation (CIT)を提案する。
我々は、テキストベースの合成技術を用いて、チャート作成コードを構築し、3kの推論集約チャートと20kのQ&Aペアを含むデータセットであるReachQAを作成した。
論文 参考訳(メタデータ) (2024-10-24T14:50:42Z) - Trust but Verify: Programmatic VLM Evaluation in the Wild [62.14071929143684]
プログラム型VLM評価(Programmatic VLM Evaluation、PROVE)は、オープンなクエリに対するVLM応答を評価するための新しいベンチマークパラダイムである。
我々は,PROVE上でのVLMの有効性-実効性トレードオフをベンチマークした結果,両者のバランスが良好であることは極めて少ないことがわかった。
論文 参考訳(メタデータ) (2024-10-17T01:19:18Z) - Declarative Knowledge Distillation from Large Language Models for Visual Question Answering Datasets [9.67464173044675]
VQA(Visual Question Answering)は、画像に関する質問に答えるタスクである。
本稿では,Large Language Models (LLMs) からの宣言的知識蒸留手法を提案する。
以上の結果から,LSMから知識を抽出することは,データ駆動型ルール学習のアプローチ以外には有望な方向であることが確認された。
論文 参考訳(メタデータ) (2024-10-12T08:17:03Z) - Revisiting Multi-Modal LLM Evaluation [29.094387692681337]
我々は,最近のMLLM(LLaVA 1.5, LLaVA-NeXT, BLIP2, InstructBLIP, GPT-4V, GPT-4o)を,以前のMLLMの弱点に対処するためのデータセット上で評価した。
我々のコードはMLLM評価のために広く使われているLAVISフレームワークに統合されており、将来のMLLMの迅速な評価を可能にしている。
論文 参考訳(メタデータ) (2024-08-09T20:55:46Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
本稿では,2次元画像を入力として,MLLMの時空間推論を強化する軽量な手法である粗対応を導入する。
本手法は,映像のフレーム間や異なる視点における主物体の対応性を特定するために,軽量な追跡モデルを用いている。
この単純なトレーニングフリーアプローチは、4つのベンチマークでGPT4-V/Oに一定の利得をもたらすことを実証する。
論文 参考訳(メタデータ) (2024-08-01T17:57:12Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) は勾配のないフレームワークで、基礎となる視覚言語モデルを用いて画像に関する詳細な情報を抽出する。
その結果、VQAv2では3.85%(絶対)、A-OKVQAでは6.41%、VizWizでは7.94%の増加が見られた。
論文 参考訳(メタデータ) (2023-10-09T16:57:57Z) - Tackling VQA with Pretrained Foundation Models without Further Training [0.0]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて最先端の結果を得た。
これらのLCMの能力により、研究者は視覚的質問回答(VQA)の使用方法を模索している。
本稿では、VQA問題を解決するために、事前訓練されたLLMと他の基礎モデルを組み合わせる方法を検討する。
論文 参考訳(メタデータ) (2023-09-27T08:35:24Z) - Modular Visual Question Answering via Code Generation [134.59005611826777]
モジュラーコード生成として視覚的質問応答を定式化するフレームワークを提案する。
提案手法では、事前学習言語モデル(LM)、画像キャプチャペアで事前学習した視覚モデル、コンテキスト内学習に使用する50のVQA例など、追加のトレーニングは不要である。
コード生成を行わない少数のベースラインと比較して,COVRデータセットの精度を少なくとも3%,GQAデータセットの精度を約2%向上させる。
論文 参考訳(メタデータ) (2023-06-08T17:45:14Z) - From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language
Models [111.42052290293965]
大規模言語モデル(LLM)は、新しい言語タスクに対して優れたゼロショット一般化を証明している。
視覚と言語データに対するエンドツーエンドのトレーニングは、切断を橋渡しするかもしれないが、柔軟性がなく、計算コストがかかる。
上述したモダリティとタスクの切断をブリッジできるプロンプトを提供するプラグイン・アンド・プレイモジュールであるemphImg2Promptを提案する。
論文 参考訳(メタデータ) (2022-12-21T08:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。