論文の概要: Label-Guided Prompt for Multi-label Few-shot Aspect Category Detection
- arxiv url: http://arxiv.org/abs/2407.20673v1
- Date: Tue, 30 Jul 2024 09:11:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:39:47.893726
- Title: Label-Guided Prompt for Multi-label Few-shot Aspect Category Detection
- Title(参考訳): 多ラベルFew-shot Aspect Category Detectionのためのラベルガイドプロンプト
- Authors: ChaoFeng Guan, YaoHui Zhu, Yu Bai, LingYun Wang,
- Abstract要約: 文やカテゴリの表現は、このタスクにおいて重要な問題である。
文やカテゴリを表現するためのラベル誘導プロンプト手法を提案する。
マクロF1スコアは3.86%~4.75%向上した。
- 参考スコア(独自算出の注目度): 12.094529796168384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-label few-shot aspect category detection aims at identifying multiple aspect categories from sentences with a limited number of training instances. The representation of sentences and categories is a key issue in this task. Most of current methods extract keywords for the sentence representations and the category representations. Sentences often contain many category-independent words, which leads to suboptimal performance of keyword-based methods. Instead of directly extracting keywords, we propose a label-guided prompt method to represent sentences and categories. To be specific, we design label-specific prompts to represent sentences by combining crucial contextual and semantic information. Further, the label is introduced into a prompt to obtain category descriptions by utilizing a large language model. This kind of category descriptions contain the characteristics of the aspect categories, guiding the construction of discriminative category prototypes. Experimental results on two public datasets show that our method outperforms current state-of-the-art methods with a 3.86% - 4.75% improvement in the Macro-F1 score.
- Abstract(参考訳): 複数ラベルの複数ショットのアスペクトカテゴリ検出は、限られた数のトレーニングインスタンスを持つ文から複数のアスペクトカテゴリを特定することを目的としている。
文やカテゴリの表現は、このタスクにおいて重要な問題である。
現在の手法のほとんどは、文表現とカテゴリ表現のキーワードを抽出する。
文はしばしばカテゴリに依存しない単語を多く含み、キーワードベースのメソッドの最適化性能をもたらす。
キーワードを直接抽出する代わりに,文やカテゴリを表現するためのラベル付きプロンプト手法を提案する。
具体的には,重要な文脈情報と意味情報を組み合わせることで,文を表現するラベル固有のプロンプトを設計する。
さらに、このラベルは、大きな言語モデルを利用してカテゴリ記述を得るためのプロンプトとして導入される。
この種のカテゴリ記述にはアスペクトカテゴリの特徴が含まれており、識別型カテゴリのプロトタイプの構築を導く。
2つの公開データセットによる実験結果から,我々の手法は,マクロF1スコアの3.86%~4.75%の改善で最先端の手法よりも優れていた。
関連論文リスト
- Category-Extensible Out-of-Distribution Detection via Hierarchical Context Descriptions [35.20091752343433]
この研究は2つの階層的文脈、すなわち知覚的文脈と刺激的文脈を導入し、正確な圏境界を注意深く記述する。
2つの文脈は、あるカテゴリの正確な記述を階層的に構成するが、これはまず、予測されたカテゴリにサンプルを大まかに分類する。
CATegory-Extensible OOD Detection (CATEX)
論文 参考訳(メタデータ) (2024-07-23T12:53:38Z) - Open-Vocabulary Temporal Action Localization using Multimodal Guidance [67.09635853019005]
OVTALでは、すべてのカテゴリのトレーニングデータを明示的にキュレートすることなく、任意のアクションカテゴリをビデオで認識することができる。
この柔軟性は、トレーニング中に見られるアクションカテゴリだけでなく、推論で指定された新しいカテゴリも認識しなければならないため、大きな課題を引き起こす。
我々は,ActionFormerを拡張した新しいオープン語彙フレームワークであるOVFormerを紹介した。
論文 参考訳(メタデータ) (2024-06-21T18:00:05Z) - AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute
Decomposition-Aggregation [33.25304533086283]
オープンボキャブラリセマンティックセグメンテーションは、推論時に新しいオブジェクトカテゴリをセグメンテーションする必要がある難しいタスクである。
最近の研究では、この課題に対処するために視覚言語による事前訓練が検討されているが、現実的なシナリオでは非現実的な仮定に悩まされている。
本研究は,新しい概念を理解する上で,人間の認知に触発された新しい属性分解集約フレームワークであるAttrSegを提案する。
論文 参考訳(メタデータ) (2023-08-31T19:34:09Z) - FastClass: A Time-Efficient Approach to Weakly-Supervised Text
Classification [14.918600168973564]
本稿では,効率的な弱教師付き分類手法であるFastClassを提案する。
センシティブテキスト表現を使用して、外部ラベルなしコーパスからクラス関連文書を検索する。
実験により,提案手法は,分類精度の観点からキーワード駆動モデルよりも優れており,訓練速度のオーダー・オブ・マグニチュードが高速であることが確認された。
論文 参考訳(メタデータ) (2022-12-11T13:43:22Z) - Out-of-Category Document Identification Using Target-Category Names as
Weak Supervision [64.671654559798]
Out-of-category Detection は、文書が不適格(またはターゲット)カテゴリと意味的関連性に応じて区別することを目的としている。
対象のカテゴリの1つに属する文書の信頼性を効果的に測定する,カテゴリ外検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-24T21:01:25Z) - MotifClass: Weakly Supervised Text Classification with Higher-order
Metadata Information [47.44278057062421]
そこで本研究では,テキスト文書をカテゴリ表面名のみを持つ事前定義されたカテゴリの集合に分類することを目的とした,弱教師付きテキスト分類の問題について検討する。
具体的には、異種情報ネットワークを介して文書とメタデータの関係をモデル化する。
そこで我々は,カテゴリ名と指示モチーフインスタンスに基づいて,カテゴリ適応モチーフインスタンスを選択し,擬似ラベル付きトレーニングサンプルを検索し,生成する,MotifClassという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-07T07:39:10Z) - Text Classification Using Label Names Only: A Language Model
Self-Training Approach [80.63885282358204]
現在のテキスト分類法は、訓練データとして多くの人ラベルの文書を必要とするのが一般的である。
本モデルでは,トピック分類や感情分類を含む4つのベンチマークデータセットにおいて,約90%の精度が得られた。
論文 参考訳(メタデータ) (2020-10-14T17:06:41Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instancelevance scores and using threshold to select multiple associated intent labels。
2つのデータセットの実験により、提案モデルが1ショットと5ショットの両方の設定において強いベースラインを著しく上回ることが示された。
論文 参考訳(メタデータ) (2020-10-11T14:42:18Z) - Multi-Instance Multi-Label Learning Networks for Aspect-Category
Sentiment Analysis [8.378067521821045]
Aspect-Category sentiment analysis (AC-MIMLLN) のためのマルチインスタンスマルチラベル学習ネットワークを提案する。
AC-MIMLLNは、文章をバッグ、単語をインスタンスとして扱い、アスペクトカテゴリのキーインスタンスとしてアスペクトカテゴリを示す単語を扱います。
3つの公開データセットの実験結果から,AC-MIMLLNの有効性が示された。
論文 参考訳(メタデータ) (2020-10-06T12:07:54Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
既存のマルチラベル分類モデルにおいて,制約に対処するためのエレガントで効果的なアプローチを提案する。
ソフトなn-gram相互作用マッチングを実行することで、ラベルと自然言語記述をマッチングする。
論文 参考訳(メタデータ) (2020-05-18T15:27:55Z) - Description Based Text Classification with Reinforcement Learning [34.18824470728299]
本稿では,各カテゴリのラベルをカテゴリ記述に関連付ける,テキスト分類のための新しいフレームワークを提案する。
我々は、幅広いテキスト分類タスクにおいて、強いベースラインよりも顕著なパフォーマンス向上を観察する。
論文 参考訳(メタデータ) (2020-02-08T02:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。