論文の概要: Industrial-Grade Smart Troubleshooting through Causal Technical Language Processing: a Proof of Concept
- arxiv url: http://arxiv.org/abs/2407.20700v1
- Date: Tue, 30 Jul 2024 09:53:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:39:47.857952
- Title: Industrial-Grade Smart Troubleshooting through Causal Technical Language Processing: a Proof of Concept
- Title(参考訳): 因果的技術言語処理による産業用スマートトラブルシューティング : 概念実証
- Authors: Alexandre Trilla, Ossee Yiboe, Nenad Mijatovic, Jordi Vitrià,
- Abstract要約: 本稿では,産業環境のトラブルシューティングにおける因果診断手法の開発について述べる。
提案手法は,大規模言語モデルの分散表現に含まれるベクトル化された言語知識と,産業資産の組込み障害モードと機構に係わる因果関係を利用する。
- 参考スコア(独自算出の注目度): 42.665309736114295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes the development of a causal diagnosis approach for troubleshooting an industrial environment on the basis of the technical language expressed in Return on Experience records. The proposed method leverages the vectorized linguistic knowledge contained in the distributed representation of a Large Language Model, and the causal associations entailed by the embedded failure modes and mechanisms of the industrial assets. The paper presents the elementary but essential concepts of the solution, which is conceived as a causality-aware retrieval augmented generation system, and illustrates them experimentally on a real-world Predictive Maintenance setting. Finally, it discusses avenues of improvement for the maturity of the utilized causal technology to meet the robustness challenges of increasingly complex scenarios in the industry.
- Abstract(参考訳): 本稿では,産業環境のトラブルシューティングにおける因果診断手法の開発について述べる。
提案手法は,大規模言語モデルの分散表現に含まれるベクトル化された言語知識と,産業資産の組込み障害モードと機構に係わる因果関係を利用する。
本稿では, 因果関係を意識した検索拡張生成システムとして考案された, ソリューションの基本的概念と本質的概念を, 実世界の予測保守環境において実験的に説明する。
最後に、産業におけるますます複雑なシナリオの堅牢性の課題を満たすために、活用された因果的技術の成熟に対する改善の道について論じる。
関連論文リスト
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems [92.89673285398521]
o1のような推論システムは、複雑な推論タスクを解く際、顕著な能力を示した。
推論モデルをトレーニングするために、模倣、探索、自己改善のフレームワークを導入します。
提案手法は,産業レベルの推論システムと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-12T16:20:36Z) - Explainability in AI Based Applications: A Framework for Comparing Different Techniques [2.5874041837241304]
ビジネスアプリケーションでは、理解可能性と精度のバランスをとる適切な説明可能性方法を選択することが課題である。
本稿では,異なる説明可能性手法の一致を評価するための新しい手法を提案する。
多様な説明可能性手法の合意を理解するための実践的な枠組みを提供することにより、ビジネスアプリケーションにおける解釈可能なAIシステムのより広範な統合を促進することを目的としている。
論文 参考訳(メタデータ) (2024-10-28T09:45:34Z) - Développement automatique de lexiques pour les concepts émergents : une exploration méthodologique [0.0]
本稿では,非技術革新を中心に,新しい概念を中心としたレキシコンの開発について述べる。
人間の専門知識、統計分析、機械学習技術を組み合わせた4段階の方法論を導入し、複数のドメインにまたがって一般化可能なモデルを確立する。
論文 参考訳(メタデータ) (2024-06-10T12:58:56Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN)フレームワークは、オープンワールドの知識と協調的な知識をシナジする。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
大規模言語モデル(LLM)は言語知能の分野を劇的に拡張した。
LLMは興味をそそるチェーン・オブ・シークレット(CoT)推論技術を活用し、答えを導き出す途中の中間ステップを定式化しなければならない。
最近の研究は、自律言語エージェントの開発を促進するためにCoT推論手法を拡張している。
論文 参考訳(メタデータ) (2023-11-20T14:30:55Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - An Ontology for Defect Detection in Metal Additive Manufacturing [3.997680012976965]
産業用 4.0 アプリケーションのキーは、データ統合とセマンティック相互運用性の問題に対処できる制御システムを開発することである。
金属添加物製造文献から知られているプロセス誘起欠陥の分類について述べる。
我々の知識基盤は、さらなる欠陥分析用語を付加することにより、付加的な製造能力を向上させることを目的としている。
論文 参考訳(メタデータ) (2022-09-29T13:35:25Z) - Technical Language Supervision for Intelligent Fault Diagnosis in
Process Industry [1.8574771508622119]
プロセス産業では,人的専門家を支援する自動故障診断手法による状態監視システムにより,メンテナンス効率,プロセス持続可能性,職場の安全が向上する。
インテリジェント障害診断(IFD)における大きな課題は、モデルのトレーニングと検証に必要なラベルの正確なデータセットを開発することである。
産業データセットにおける技術的言語アノテーションとしての、障害特性と重大性差別に関するドメイン固有知識。
これにより、産業データに基づくIFDシステムのための技術言語監視(TLS)ソリューションを開発する機会が生まれる。
論文 参考訳(メタデータ) (2021-12-11T18:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。