論文の概要: Explainability in AI Based Applications: A Framework for Comparing Different Techniques
- arxiv url: http://arxiv.org/abs/2410.20873v1
- Date: Mon, 28 Oct 2024 09:45:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:59.174773
- Title: Explainability in AI Based Applications: A Framework for Comparing Different Techniques
- Title(参考訳): AIベースのアプリケーションの説明可能性:異なるテクニックを比較するためのフレームワーク
- Authors: Arne Grobrugge, Nidhi Mishra, Johannes Jakubik, Gerhard Satzger,
- Abstract要約: ビジネスアプリケーションでは、理解可能性と精度のバランスをとる適切な説明可能性方法を選択することが課題である。
本稿では,異なる説明可能性手法の一致を評価するための新しい手法を提案する。
多様な説明可能性手法の合意を理解するための実践的な枠組みを提供することにより、ビジネスアプリケーションにおける解釈可能なAIシステムのより広範な統合を促進することを目的としている。
- 参考スコア(独自算出の注目度): 2.5874041837241304
- License:
- Abstract: The integration of artificial intelligence into business processes has significantly enhanced decision-making capabilities across various industries such as finance, healthcare, and retail. However, explaining the decisions made by these AI systems poses a significant challenge due to the opaque nature of recent deep learning models, which typically function as black boxes. To address this opacity, a multitude of explainability techniques have emerged. However, in practical business applications, the challenge lies in selecting an appropriate explainability method that balances comprehensibility with accuracy. This paper addresses the practical need of understanding differences in the output of explainability techniques by proposing a novel method for the assessment of the agreement of different explainability techniques. Based on our proposed methods, we provide a comprehensive comparative analysis of six leading explainability techniques to help guiding the selection of such techniques in practice. Our proposed general-purpose method is evaluated on top of one of the most popular deep learning architectures, the Vision Transformer model, which is frequently employed in business applications. Notably, we propose a novel metric to measure the agreement of explainability techniques that can be interpreted visually. By providing a practical framework for understanding the agreement of diverse explainability techniques, our research aims to facilitate the broader integration of interpretable AI systems in business applications.
- Abstract(参考訳): 人工知能のビジネスプロセスへの統合は、金融、ヘルスケア、小売といった様々な産業における意思決定能力を大幅に向上させた。
しかし、これらのAIシステムによる決定を説明することは、最近のディープラーニングモデルの不透明な性質がブラックボックスとして機能するため、大きな課題となる。
この不透明さに対処するため、多くの説明可能性技術が出現している。
しかし、実際のビジネスアプリケーションでは、理解可能性と精度のバランスをとる適切な説明可能性方法を選択することが課題となっている。
本稿では、異なる説明可能性手法の一致を評価するための新しい手法を提案することにより、説明可能性手法の出力の違いを理解することの実際的ニーズについて述べる。
提案手法に基づいて,6つの主要な説明可能性手法の総合的比較分析を行い,そのような手法の実践的選択の導出を支援する。
提案手法は,ビジネスアプリケーションによく利用される,最も人気のあるディープラーニングアーキテクチャであるビジョントランスフォーマーモデル上で評価される。
特に,視覚的に解釈可能な説明可能性手法の一致を測定するための新しい尺度を提案する。
多様な説明可能性手法の合意を理解するための実践的な枠組みを提供することにより、ビジネスアプリケーションにおける解釈可能なAIシステムのより広範な統合を促進することを目的としている。
関連論文リスト
- Learn Beyond The Answer: Training Language Models with Reflection for Mathematical Reasoning [59.98430756337374]
教師付き微調整により、様々な数学的推論タスクにおける言語モデルの問題解決能力が向上する。
本研究は,手前のトレーニング問題をより深く理解することを目的とした,新しい技術を紹介する。
本稿では,各トレーニングインスタンスに問題反映を埋め込む手法であるリフレクティブ拡張を提案する。
論文 参考訳(メタデータ) (2024-06-17T19:42:22Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - A Comprehensive Review on Financial Explainable AI [29.229196780505532]
金融の文脈における深層学習モデルの説明可能性向上を目的とした手法の比較調査を行う。
説明可能なAI手法のコレクションは,その特性に応じて分類する。
我々は、説明可能なAI手法を採用する際の懸念と課題を、適切かつ重要と考えられる今後の方向性とともにレビューする。
論文 参考訳(メタデータ) (2023-09-21T10:30:49Z) - Helpful, Misleading or Confusing: How Humans Perceive Fundamental
Building Blocks of Artificial Intelligence Explanations [11.667611038005552]
我々は、洗練された予測アルゴリズムから一歩引いて、単純な意思決定モデルの説明可能性について検討する。
我々は、人々がそれぞれの表現の理解性をどう感じているかを評価することを目的とする。
これにより、さまざまな利害関係者が、より精巧な人工知能の説明が構築される基本的な概念の無知性を判断することができる。
論文 参考訳(メタデータ) (2023-03-02T03:15:35Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
機械学習の手法は、敏感な社会的文脈でますます適用されつつある。
本研究の主な目的は2つある。
まず、これらの課題を公開し、関連性のある新しい説明方法の使用にどのように影響するか。
次に、関連するアプリケーションドメインで説明メソッドを実装する際に直面するような課題を軽減する一連の戦略を提示します。
論文 参考訳(メタデータ) (2021-04-09T01:54:58Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - SIDU: Similarity Difference and Uniqueness Method for Explainable AI [21.94600656231124]
本稿では,深層学習ネットワークにおける新たな視覚的説明法について述べる。
提案手法は,有望な視覚的説明が有望であることを示す。
論文 参考訳(メタデータ) (2020-06-04T20:33:40Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。