OmniBal: Towards Fast Instruct-tuning for Vision-Language Models via Omniverse Computation Balance
- URL: http://arxiv.org/abs/2407.20761v1
- Date: Tue, 30 Jul 2024 12:02:58 GMT
- Title: OmniBal: Towards Fast Instruct-tuning for Vision-Language Models via Omniverse Computation Balance
- Authors: Yongqiang Yao, Jingru Tan, Jiahao Hu, Feizhao Zhang, Xin Jin, Bo Li, Ruihao Gong, Pengfei Liu,
- Abstract summary: Large-scale 3D parallel training on vision-language instruct-tuning models leads to an imbalanced computation load across different devices.
We rebalanced the computational loads from data, model, and memory perspectives to address this issue.
Our method's efficacy and generalizability were further demonstrated across various models and datasets.
- Score: 35.40320275366383
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recently, vision-language instruct-tuning models have made significant progress due to their more comprehensive understanding of the world. In this work, we discovered that large-scale 3D parallel training on those models leads to an imbalanced computation load across different devices. The vision and language parts are inherently heterogeneous: their data distribution and model architecture differ significantly, which affects distributed training efficiency. We rebalanced the computational loads from data, model, and memory perspectives to address this issue, achieving more balanced computation across devices. These three components are not independent but are closely connected, forming an omniverse balanced training framework. Specifically, for the data, we grouped instances into new balanced mini-batches within and across devices. For the model, we employed a search-based method to achieve a more balanced partitioning. For memory optimization, we adaptively adjusted the re-computation strategy for each partition to utilize the available memory fully. We conducted extensive experiments to validate the effectiveness of our method. Compared with the open-source training code of InternVL-Chat, we significantly reduced GPU days, achieving about 1.8x speed-up. Our method's efficacy and generalizability were further demonstrated across various models and datasets. Codes will be released at https://github.com/ModelTC/OmniBal.
Related papers
- Does equivariance matter at scale? [15.247352029530523]
We study how equivariant and non-equivariant networks scale with compute and training samples.
First, equivariance improves data efficiency, but training non-equivariant models with data augmentation can close this gap given sufficient epochs.
Second, scaling with compute follows a power law, with equivariant models outperforming non-equivariant ones at each tested compute budget.
arXiv Detail & Related papers (2024-10-30T16:36:59Z) - Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations [62.132347451049455]
Scale has become a main ingredient in obtaining strong machine learning models.
In this work, we argue that scale and training research has been needlessly complex due to reliance on the cosine schedule.
We show that weight averaging yields improved performance along the training trajectory, without additional training costs, across different scales.
arXiv Detail & Related papers (2024-05-28T17:33:54Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPU memory constraints have become a notable bottleneck in training such sizable models.
This study advocates partitioning the model across GPU and generating synthetic intermediate labels to train individual segments.
This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy.
arXiv Detail & Related papers (2024-03-17T13:06:29Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Benchmarking Learning Efficiency in Deep Reservoir Computing [23.753943709362794]
We introduce a benchmark of increasingly difficult tasks together with a data efficiency metric to measure how quickly machine learning models learn from training data.
We compare the learning speed of some established sequential supervised models, such as RNNs, LSTMs, or Transformers, with relatively less known alternative models based on reservoir computing.
arXiv Detail & Related papers (2022-09-29T08:16:52Z) - Efficient Augmentation for Imbalanced Deep Learning [8.38844520504124]
We study a convolutional neural network's internal representation of imbalanced image data.
We measure the generalization gap between a model's feature embeddings in the training and test sets, showing that the gap is wider for minority classes.
This insight enables us to design an efficient three-phase CNN training framework for imbalanced data.
arXiv Detail & Related papers (2022-07-13T09:43:17Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Automatic Cross-Replica Sharding of Weight Update in Data-Parallel
Training [12.36664837965624]
This paper presents an approach to automatically shard the weight update across replicas.
We show this technique achieves substantial speedups on typical image and language models on Cloud TPUs.
arXiv Detail & Related papers (2020-04-28T07:13:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.