論文の概要: Training LLMs for Generating IEC 61131-3 Structured Text with Online Feedback
- arxiv url: http://arxiv.org/abs/2410.22159v2
- Date: Wed, 30 Oct 2024 06:11:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:23.541992
- Title: Training LLMs for Generating IEC 61131-3 Structured Text with Online Feedback
- Title(参考訳): オンラインフィードバックによるIEC 61131-3構造化テキスト生成のためのLLM学習
- Authors: Aaron Haag, Bertram Fuchs, Altay Kacan, Oliver Lohse,
- Abstract要約: 本稿では,学習データの品質向上を重視した大規模言語モデル(LLM)の学習手法を提案する。
このフレームワークは、産業自動化アプリケーションに非常に適しており、最先端のモデルを上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The advent of large language models (LLMs), such as GPT-4, has enabled significant advancements in generating code across various domains. However, these models face unique challenges when generating IEC 61131-3 Structured Text (ST) code due to limited data in public training datasets and the complexity of ST language syntax. This paper proposes a novel approach to training LLMs that emphasizes improving the quality of learning data through an online process involving compiler feedback and evaluation from a secondary LLM. In this framework, the primary LLM generates new training samples, which are subsequently evaluated by a compiler for syntactical correctness and by a specialized LLM that excels at assessing semantic accuracy, though it is not optimized for code generation itself. Through iterative refinement of the training data, this approach results in marked improvements for the trained LLM, leading to higher compilation success rates and better semantic precision. As a result, the framework proves highly suitable for industrial automation applications and outperforms state-of-the-art models.
- Abstract(参考訳): GPT-4のような大規模言語モデル(LLM)の出現は、様々なドメインにわたるコード生成において大きな進歩をもたらした。
しかし、これらのモデルは、パブリックトレーニングデータセットの限られたデータとST言語の構文の複雑さのために、IEC 61131-3 構造化テキスト(ST)コードを生成する際に、ユニークな課題に直面している。
本稿では,2次LLMからのコンパイラフィードバックと評価を含むオンラインプロセスを通じて,学習データの品質向上を重視したLLMのトレーニング手法を提案する。
このフレームワークでは、主要なLLMが新たなトレーニングサンプルを生成し、その後、構文的正確性のためにコンパイラによって評価され、コード生成自体に最適化されていないが、セマンティックな正確性を評価するための特別なLLMによって評価される。
トレーニングデータの反復的な改善により、トレーニングされたLLMが大幅に改善され、コンパイルの成功率が向上し、セマンティック精度が向上した。
結果として、このフレームワークは産業自動化アプリケーションに非常に適しており、最先端のモデルより優れていることが証明された。
関連論文リスト
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
LLM(Large Language Model)は、PythonやC++などのプログラミング言語に使用される。
本稿では,LLMを利用してHLS(High-Level Synthesis)ベースのハードウェア設計を行う。
論文 参考訳(メタデータ) (2025-02-19T17:53:59Z) - A Systematic Approach for Assessing Large Language Models' Test Case Generation Capability [0.8287206589886879]
大規模言語モデル (LLM) を評価するために,制御フロー構造と可変利用構成 (GBCV) から生成したベンチマークを提案する。
基本的な制御フロー構造と変数使用量を活用することで、GBCVは、単純なプログラムから複雑なプログラムの範囲を作成する柔軟なフレームワークを提供する。
以上の結果から,GPT-4oは複雑なプログラム構造において優れた性能を示し,全てのモデルが単純な条件下で境界値を効果的に検出するが,算術計算では問題に直面することが示唆された。
論文 参考訳(メタデータ) (2025-02-05T03:51:44Z) - A Multi-Agent Framework for Extensible Structured Text Generation in PLCs [9.555744065377148]
IEC 61131-3規格に準拠した高水準言語はPLCにとって重要なものである。
STの完全な意味論に関する包括的で標準化されたドキュメントが欠如していることは、言語の実装方法に矛盾をもたらしている。
ベンダー固有のSTコードの自動生成を目的としたLCMベースのアプローチであるAutoPLCを提案する。
論文 参考訳(メタデータ) (2024-12-03T12:05:56Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
複合AIシステムでは、LLMコール、レトリバー、コードインタプリタ、ツールなどのコンポーネントが相互接続される。
近年の進歩により, LLM を用いたパラメータのエンドツーエンド最適化が可能となった。
本稿では,複合AIシステムのLCMに基づく最適化の原理と動向について述べる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
本稿では,大規模言語モデルのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
論文 参考訳(メタデータ) (2024-07-29T20:42:59Z) - Towards Large Language Model Aided Program Refinement [10.089955747110444]
プログラムの洗練には、正式なハイレベルな仕様文から実行可能なプログラムへの正当性保存の変換が含まれる。
大型言語モデル(LLM)は、非公式な自然言語仕様から自動コード生成を可能にする。
LLM4PRは,形式的プログラム改善手法と非公式なLCMベースの手法を組み合わせたツールである。
論文 参考訳(メタデータ) (2024-06-26T04:29:27Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
人間からのフィードバック(RLHF)からの強化学習は、人間の好みに合わせることで、大きな言語モデル(LLM)の出力の品質を向上させることができる。
強化自己学習(Reinforced Self-Training, ReST)と呼ばれる, バッチ強化学習(RL)の成長にインスパイアされたLLMを人間の好みに合わせるための簡単なアルゴリズムを提案する。
この結果から,ReSTは自動測定値と機械翻訳ベンチマークの人的評価によって,計算とサンプル効率で翻訳品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-08-17T14:12:48Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。