Embedding Space Selection for Detecting Memorization and Fingerprinting in Generative Models
- URL: http://arxiv.org/abs/2407.21159v1
- Date: Tue, 30 Jul 2024 19:52:49 GMT
- Title: Embedding Space Selection for Detecting Memorization and Fingerprinting in Generative Models
- Authors: Jack He, Jianxing Zhao, Andrew Bai, Cho-Jui Hsieh,
- Abstract summary: Generative Adversarial Networks (GANs) and Diffusion Models have become cornerstone technologies, driving innovation in diverse fields from art creation to healthcare.
Despite their potential, these models face the significant challenge of data memorization, which poses risks to privacy and the integrity of generated content.
We study memorization scores calculated from encoder layer embeddings, which involves measuring distances between samples in the embedding spaces.
- Score: 45.83830252441126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving landscape of artificial intelligence, generative models such as Generative Adversarial Networks (GANs) and Diffusion Models have become cornerstone technologies, driving innovation in diverse fields from art creation to healthcare. Despite their potential, these models face the significant challenge of data memorization, which poses risks to privacy and the integrity of generated content. Among various metrics of memorization detection, our study delves into the memorization scores calculated from encoder layer embeddings, which involves measuring distances between samples in the embedding spaces. Particularly, we find that the memorization scores calculated from layer embeddings of Vision Transformers (ViTs) show an notable trend - the latter (deeper) the layer, the less the memorization measured. It has been found that the memorization scores from the early layers' embeddings are more sensitive to low-level memorization (e.g. colors and simple patterns for an image), while those from the latter layers are more sensitive to high-level memorization (e.g. semantic meaning of an image). We also observe that, for a specific model architecture, its degree of memorization on different levels of information is unique. It can be viewed as an inherent property of the architecture. Building upon this insight, we introduce a unique fingerprinting methodology. This method capitalizes on the unique distributions of the memorization score across different layers of ViTs, providing a novel approach to identifying models involved in generating deepfakes and malicious content. Our approach demonstrates a marked 30% enhancement in identification accuracy over existing baseline methods, offering a more effective tool for combating digital misinformation.
Related papers
- A Geometric Framework for Understanding Memorization in Generative Models [11.263296715798374]
Recent work has shown that deep generative models can be capable of memorizing and reproducing training datapoints when deployed.
These findings call into question the usability of generative models, especially in light of the legal and privacy risks brought about by memorization.
We propose the manifold memorization hypothesis (MMH), a geometric framework which leverages the manifold hypothesis into a clear language in which to reason about memorization.
arXiv Detail & Related papers (2024-10-31T18:09:01Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs.
Concerns arise as research indicates their tendency to memorize and replicate training data.
Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens.
arXiv Detail & Related papers (2024-06-01T15:47:13Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
Research indicates that text-to-image diffusion models replicate images from their training data, raising tremendous concerns about potential copyright infringement and privacy risks.
We reveal that during memorization, the cross-attention tends to focus disproportionately on the embeddings of specific tokens.
We introduce an innovative approach to detect and mitigate memorization in diffusion models.
arXiv Detail & Related papers (2024-03-17T01:27:00Z) - The Curious Case of Benign Memorization [19.74244993871716]
We show that under training protocols that include data augmentation, neural networks learn to memorize entirely random labels in a benign way.
We demonstrate that deep models have the surprising ability to separate noise from signal by distributing the task of memorization and feature learning to different layers.
arXiv Detail & Related papers (2022-10-25T13:41:31Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - On Memorization in Probabilistic Deep Generative Models [4.987581730476023]
Recent advances in deep generative models have led to impressive results in a variety of application domains.
Motivated by the possibility that deep learning models might memorize part of the input data, there have been increased efforts to understand how memorization can occur.
arXiv Detail & Related papers (2021-06-06T19:33:04Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
arXiv Detail & Related papers (2020-11-21T19:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.