Extending choice assessments to choice functions: An algorithm for computing the natural extension
- URL: http://arxiv.org/abs/2407.21164v2
- Date: Wed, 13 Nov 2024 15:22:32 GMT
- Title: Extending choice assessments to choice functions: An algorithm for computing the natural extension
- Authors: Arne Decadt, Alexander Erreygers, Jasper De Bock,
- Abstract summary: We study how to infer new choices from prior choices using the framework of choice functions.
In particular, we define the natural (most conservative) extension of a given choice assessment to a coherent choice function.
- Score: 45.238324742678124
- License:
- Abstract: We study how to infer new choices from prior choices using the framework of choice functions, a unifying mathematical framework for decision-making based on sets of preference orders. In particular, we define the natural (most conservative) extension of a given choice assessment to a coherent choice function -- whenever possible -- and use this natural extension to make new choices. We provide a practical algorithm for computing this natural extension and various ways to improve scalability. Finally, we test these algorithms for different types of choice assessments.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Finding Optimal Diverse Feature Sets with Alternative Feature Selection [0.0]
We introduce alternative feature selection and formalize it as an optimization problem.
In particular, we define alternatives via constraints and enable users to control the number and dissimilarity of alternatives.
We show that a constant-factor approximation exists under certain conditions and propose corresponding search methods.
arXiv Detail & Related papers (2023-07-21T14:23:41Z) - Decision-making with E-admissibility given a finite assessment of
choices [64.29961886833972]
We study the implications for decision-making with E-admissibility.
We use the mathematical framework of choice functions to specify choices and rejections.
We provide an algorithm that computes this extension by solving linear feasibility problems.
arXiv Detail & Related papers (2022-04-15T11:46:00Z) - Choosing on Sequences [0.0]
We propose a new framework that considers choice from infinite sequences.
We show that bounded attention is due to the continuity of the choice functions with respect to a natural topology.
We introduce the notion of computability of a choice function using Turing machines and show that computable choice rules can be implemented by a finite automaton.
arXiv Detail & Related papers (2022-02-28T20:16:24Z) - Fast Feature Selection with Fairness Constraints [49.142308856826396]
We study the fundamental problem of selecting optimal features for model construction.
This problem is computationally challenging on large datasets, even with the use of greedy algorithm variants.
We extend the adaptive query model, recently proposed for the greedy forward selection for submodular functions, to the faster paradigm of Orthogonal Matching Pursuit for non-submodular functions.
The proposed algorithm achieves exponentially fast parallel run time in the adaptive query model, scaling much better than prior work.
arXiv Detail & Related papers (2022-02-28T12:26:47Z) - Learning Choice Functions via Pareto-Embeddings [3.1410342959104725]
We consider the problem of learning to choose from a given set of objects, where each object is represented by a feature vector.
We propose a learning algorithm that minimizes a differentiable loss function suitable for this task.
arXiv Detail & Related papers (2020-07-14T09:34:44Z) - Inference with Choice Functions Made Practical [1.1859913430860332]
We study how to infer new choices from previous choices in a conservative manner.
We use the theory of choice functions: a unifying mathematical framework for conservative decision making.
arXiv Detail & Related papers (2020-05-07T12:58:05Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.