NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements
- URL: http://arxiv.org/abs/2407.21217v2
- Date: Tue, 15 Oct 2024 16:08:30 GMT
- Title: NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements
- Authors: Khemraj Shukla, Zongren Zou, Chi Hin Chan, Additi Pandey, Zhicheng Wang, George Em Karniadakis,
- Abstract summary: This study introduces NeuroSEM, a hybrid framework integrating PINNs with the high-fidelity Spectral Element Method (SEM) solver, Nektar++.
NeuroSEM leverages the strengths of both PINNs and SEM, providing robust solutions for multiphysics problems.
We demonstrate the efficiency and accuracy of NeuroSEM for thermal convection in cavity flow and flow past a cylinder.
- Score: 7.704598780320887
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multiphysics problems that are characterized by complex interactions among fluid dynamics, heat transfer, structural mechanics, and electromagnetics, are inherently challenging due to their coupled nature. While experimental data on certain state variables may be available, integrating these data with numerical solvers remains a significant challenge. Physics-informed neural networks (PINNs) have shown promising results in various engineering disciplines, particularly in handling noisy data and solving inverse problems in partial differential equations (PDEs). However, their effectiveness in forecasting nonlinear phenomena in multiphysics regimes, particularly involving turbulence, is yet to be fully established. This study introduces NeuroSEM, a hybrid framework integrating PINNs with the high-fidelity Spectral Element Method (SEM) solver, Nektar++. NeuroSEM leverages the strengths of both PINNs and SEM, providing robust solutions for multiphysics problems. PINNs are trained to assimilate data and model physical phenomena in specific subdomains, which are then integrated into the Nektar++ solver. We demonstrate the efficiency and accuracy of NeuroSEM for thermal convection in cavity flow and flow past a cylinder. We applied NeuroSEM to the Rayleigh-B\'enard convection system, including cases with missing thermal boundary conditions and noisy datasets, and to real particle image velocimetry (PIV) data to capture flow patterns characterized by horseshoe vortical structures. The framework's plug-and-play nature facilitates its extension to other multiphysics or multiscale problems. Furthermore, NeuroSEM is optimized for efficient execution on emerging integrated GPU-CPU architectures. This hybrid approach enhances the accuracy and efficiency of simulations, making it a powerful tool for tackling complex engineering challenges in various scientific domains.
Related papers
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
Physics-Informed Neural Networks (PINNs) have emerged as an influential technology, merging the swift and automated capabilities of machine learning with the precision and dependability of simulations grounded in theoretical physics.
However, wide adoption of PINNs is still hindered by reliability issues, particularly at extreme ends of the input parameter ranges.
We propose a domain knowledge-based modifications to the PINN architecture ensuring its correct behavior.
arXiv Detail & Related papers (2024-11-15T08:55:31Z) - An efficient wavelet-based physics-informed neural networks for singularly perturbed problems [0.0]
Physics-informed neural networks (PINNs) are a class of deep learning models that utilize physics as differential equations.
We present an efficient wavelet-based PINNs model to solve singularly perturbed differential equations.
The architecture allows the training process to search for a solution within wavelet space, making the process faster and more accurate.
arXiv Detail & Related papers (2024-09-18T10:01:37Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
Physics-Informed Neural Network (PINN) is a novel multi-task learning framework useful for solving physical problems modeled using differential equations (DEs)
This paper reports a PINN-based approach to solve coupled systems involving multiple governing parameters (energy and species, along with multiple interface balance equations)
arXiv Detail & Related papers (2024-09-17T06:00:18Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.