Multi-Physics Simulations via Coupled Fourier Neural Operator
- URL: http://arxiv.org/abs/2501.17296v2
- Date: Thu, 30 Jan 2025 03:18:31 GMT
- Title: Multi-Physics Simulations via Coupled Fourier Neural Operator
- Authors: Shibo Li, Tao Wang, Yifei Sun, Hewei Tang,
- Abstract summary: We introduce a novel coupled multi-physics neural operator learning (COMPOL) framework to model interactions among multiple physical processes.<n>Our approach implements feature aggregation through recurrent and attention mechanisms, enabling comprehensive modeling of coupled interactions.<n>Our proposed model demonstrates a two to three-fold improvement in predictive performance compared to existing approaches.
- Score: 9.839064047196114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical simulations are essential tools across critical fields such as mechanical and aerospace engineering, chemistry, meteorology, etc. While neural operators, particularly the Fourier Neural Operator (FNO), have shown promise in predicting simulation results with impressive performance and efficiency, they face limitations when handling real-world scenarios involving coupled multi-physics outputs. Current neural operator methods either overlook the correlations between multiple physical processes or employ simplistic architectures that inadequately capture these relationships. To overcome these challenges, we introduce a novel coupled multi-physics neural operator learning (COMPOL) framework that extends the capabilities of Fourier operator layers to model interactions among multiple physical processes. Our approach implements feature aggregation through recurrent and attention mechanisms, enabling comprehensive modeling of coupled interactions. Our method's core is an innovative system for aggregating latent features from multi-physics processes. These aggregated features serve as enriched information sources for neural operator layers, allowing our framework to capture complex physical relationships accurately. We evaluated our coupled multi-physics neural operator across diverse physical simulation tasks, including biological systems, fluid mechanics, and multiphase flow in porous media. Our proposed model demonstrates a two to three-fold improvement in predictive performance compared to existing approaches.
Related papers
- Connecting the geometry and dynamics of many-body complex systems with message passing neural operators [1.8434042562191815]
We introduce a scalable AI framework, ROMA, for learning multiscale evolution operators of many-body complex systems.
An attention mechanism is used to model multiscale interactions by connecting geometric representations of local subgraphs and dynamical operators.
We demonstrate that the ROMA framework improves scalability and positive transfer between forecasting and effective dynamics tasks.
arXiv Detail & Related papers (2025-02-21T20:04:09Z) - NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements [7.704598780320887]
This study introduces NeuroSEM, a hybrid framework integrating PINNs with the high-fidelity Spectral Element Method (SEM) solver, Nektar++.
NeuroSEM leverages the strengths of both PINNs and SEM, providing robust solutions for multiphysics problems.
We demonstrate the efficiency and accuracy of NeuroSEM for thermal convection in cavity flow and flow past a cylinder.
arXiv Detail & Related papers (2024-07-30T22:01:14Z) - Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
Transformer-based models have demonstrated exceptional performance across diverse domains.
Little is known about how they operate or what are their expected dynamics.
We use methods for the study of asymmetric Hopfield networks in nonequilibrium regimes.
arXiv Detail & Related papers (2024-06-11T13:29:34Z) - Bond Graphs for multi-physics informed Neural Networks for multi-variate time series [6.775534755081169]
Existing methods are not adapted to tasks with complex multi-physical and multi-domain phenomena.
We propose a Neural Bond graph (NBgE) producing multi-physics-informed representations that can be fed into any task-specific model.
arXiv Detail & Related papers (2024-05-22T12:30:25Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Noise-Aware Training of Neuromorphic Dynamic Device Networks [2.2691986670431197]
We propose a novel, noise-aware methodology for training device networks.
Our approach employs backpropagation through time and cascade learning, allowing networks to effectively exploit the temporal properties of physical devices.
arXiv Detail & Related papers (2024-01-14T22:46:53Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
We generalize the idea of conditional parametrization -- using trainable functions of input parameters.
We show that conditionally parameterized networks provide superior performance compared to their traditional counterparts.
A network architecture named CP-GNet is also proposed as the first deep learning model capable of reacting standalone prediction of flows on meshes.
arXiv Detail & Related papers (2021-09-15T20:21:13Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.