論文の概要: TaskEval: Assessing Difficulty of Code Generation Tasks for Large Language Models
- arxiv url: http://arxiv.org/abs/2407.21227v2
- Date: Mon, 10 Mar 2025 17:41:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:41:02.570089
- Title: TaskEval: Assessing Difficulty of Code Generation Tasks for Large Language Models
- Title(参考訳): TaskEval: 大規模言語モデルのためのコード生成タスクの難しさを評価する
- Authors: Florian Tambon, Amin Nikanjam, Cyrine Zid, Foutse Khomh, Giuliano Antoniol,
- Abstract要約: LLM(Large Language Models)はコード生成のようなコード関連のタスクに優れていますが、ベンチマーク評価は困難などのタスク特性を見落とします。
本稿では,多種多様なプロンプトと項目応答理論(IRT)を用いてLCMの能力とベンチマークタスク特性を効率的に評価するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.143152327874802
- License:
- Abstract: Large Language Models (LLMs) excel in code-related tasks like code generation, but benchmark evaluations often overlook task characteristics, such as difficulty. Moreover, benchmarks are usually built using tasks described with one single prompt, despite the formulation of prompts having a profound impact on the outcome. This paper introduces a generalist approach, TaskEval, a framework using diverse prompts and Item Response Theory (IRT) to efficiently assess LLMs' capabilities and benchmark task characteristics, improving the understanding of their performance. Using two code generation benchmarks, HumanEval+ and ClassEval, as well as 5 code generation LLMs, we show that TaskEval is capable of characterizing the properties of tasks. Using topic analysis, we identify and analyze the tasks of respectively 17 and 21 topics within the benchmarks. We also cross-analyze tasks' characteristics with programming constructs (e.g., variable assignment, conditions, etc.) used by LLMs, emphasizing some patterns with tasks' difficulty. Finally, we conduct a comparison between the difficulty assessment of tasks by human-annotators and LLMs. Orthogonal to current benchmarking evaluation efforts, TaskEval can assist researchers and practitioners in fostering better assessments of LLMs. The tasks' characteristics can be used to identify shortcomings within existing benchmarks. This could be used to generate additional related tasks for the evaluation or improvement of LLM.
- Abstract(参考訳): LLM(Large Language Models)はコード生成のようなコード関連のタスクに優れていますが、ベンチマーク評価は困難などのタスク特性を見落とします。
さらに、ベンチマークは通常、1つのプロンプトで記述されたタスクを使用して構築される。
本稿では,多種多様なプロンプトと項目応答理論(IRT)を用いた汎用的手法であるTaskEvalを紹介し,LCMの能力とタスク特性のベンチマークを効率的に評価し,その性能の理解を向上させる。
HumanEval+とClassEvalの2つのコード生成ベンチマークと5つのコード生成LDMを用いて、TaskEvalがタスクの特性を特徴づける能力を示している。
トピック分析を用いて、ベンチマークでそれぞれ17と21のトピックのタスクを特定し、分析する。
また、LLMが使用するプログラミング構造(例えば、変数代入、条件など)を用いてタスクの特性を横断分析し、タスクの難易度でいくつかのパターンを強調する。
最後に、人間のアノテーションによるタスクの難易度評価とLLMによるタスクの難易度評価の比較を行う。
現在のベンチマーク評価の取り組みと直交して、TaskEvalは研究者や実践者がLCMのより良い評価を促進するのを助けることができる。
タスクの特徴は、既存のベンチマーク内の欠点を特定するために使用できる。
これは、LCMの評価や改善のための追加の関連するタスクを生成するために使用できる。
関連論文リスト
- How to Get Your LLM to Generate Challenging Problems for Evaluation [33.625052642068624]
CHASEは、大規模言語モデルを用いて、難しい問題を合成的に生成する統合フレームワークである。
評価ベンチマークを作成するためにCHASEを実装している。
これらのベンチマークにおける最先端のLCMの性能は、40-60%の精度の範囲にある。
論文 参考訳(メタデータ) (2025-02-20T16:09:55Z) - Are Your LLMs Capable of Stable Reasoning? [38.03049704515947]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な進歩を示している。
しかし、ベンチマークパフォーマンスと実世界のアプリケーションの間には大きな違いがある。
G-Pass@kはモデルの性能を連続的に評価する新しい評価指標である。
本稿では,挑戦的,現代数学的な問題からなる動的ベンチマークであるLiveMathBenchを紹介する。
論文 参考訳(メタデータ) (2024-12-17T18:12:47Z) - Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization [126.27645170941268]
さまざまなドメインにまたがる6つのベンチマークデータセットのコレクションであるEasy2Hard-Benchを紹介します。
これらのデータセット内の各問題は、数値的な難易度スコアで注釈付けされる。
様々な難易度にまたがる性能と一般化能力を総合的に分析する。
論文 参考訳(メタデータ) (2024-09-27T03:49:56Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
BigCodeBenchは、大規模言語モデル(LLM)に対して、139のライブラリと7つのドメインから1140のきめ細かいタスクに対して、複数の関数呼び出しをツールとして呼び出すためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
そこで本研究では,BigCodeBench-Instructという自然言語指向の変種を提案する。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - PECC: Problem Extraction and Coding Challenges [3.287942619833188]
PECCは、Advent Of Code(AoC)の課題とProject Eulerから派生した、新しいベンチマークである。
従来のベンチマークとは異なり、PECCは物語に埋め込まれた問題を解釈し、要求を抽出し、コードを生成するためにLCMを必要とする。
結果は、ユーラー数に基づく部分集合において、物語的問題と中立的問題の間に様々なモデル性能を示す。
論文 参考訳(メタデータ) (2024-04-29T15:02:14Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。