STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data
- URL: http://arxiv.org/abs/2407.21323v1
- Date: Wed, 31 Jul 2024 04:06:47 GMT
- Title: STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data
- Authors: Wei Zhang, Weiming Zeng, Hongyu Chen, Jie Liu, Hongjie Yan, Kaile Zhang, Ran Tao, Wai Ting Siok, Nizhuan Wang,
- Abstract summary: We propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating CNN and RNN to capture both temporal and spatial features.
Experiments demonstrate that STANet superior depression diagnostic performance with 82.38% accuracy and a 90.72% AUC.
- Score: 12.344849949026989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate diagnosis of depression is crucial for timely implementation of optimal treatments, preventing complications and reducing the risk of suicide. Traditional methods rely on self-report questionnaires and clinical assessment, lacking objective biomarkers. Combining fMRI with artificial intelligence can enhance depression diagnosis by integrating neuroimaging indicators. However, the specificity of fMRI acquisition for depression often results in unbalanced and small datasets, challenging the sensitivity and accuracy of classification models. In this study, we propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating CNN and RNN to capture both temporal and spatial features of brain activity. STANet comprises the following steps:(1) Aggregate spatio-temporal information via ICA. (2) Utilize multi-scale deep convolution to capture detailed features. (3) Balance data using the SMOTE to generate new samples for minority classes. (4) Employ the AFGRU classifier, which combines Fourier transformation with GRU, to capture long-term dependencies, with an adaptive weight assignment mechanism to enhance model generalization. The experimental results demonstrate that STANet achieves superior depression diagnostic performance with 82.38% accuracy and a 90.72% AUC. The STFA module enhances classification by capturing deeper features at multiple scales. The AFGRU classifier, with adaptive weights and stacked GRU, attains higher accuracy and AUC. SMOTE outperforms other oversampling methods. Additionally, spatio-temporal aggregated features achieve better performance compared to using only temporal or spatial features. STANet outperforms traditional or deep learning classifiers, and functional connectivity-based classifiers, as demonstrated by ten-fold cross-validation.
Related papers
- Denoising Variational Autoencoder as a Feature Reduction Pipeline for the diagnosis of Autism based on Resting-state fMRI [11.871709357017416]
Autism spectrum disorders (ASDs) are developmental conditions characterized by restricted interests and difficulties in communication.
We propose an ASD feature reduction pipeline using resting-state fMRI (rs-fMRI)
We used Ncuts parcellations and Power atlas to extract functional connectivity data, resulting in over 30 thousand features.
arXiv Detail & Related papers (2024-09-30T09:38:47Z) - Multi-SIGATnet: A multimodal schizophrenia MRI classification algorithm using sparse interaction mechanisms and graph attention networks [8.703026708558157]
A novel graph attention network based on sparse interaction mechanism (Multi- SIGATnet) was proposed forSchizophrenia classification.
The effectiveness of the model is verified on the Center for Biomedical Research Excellence (COBRE) and University of California Los Angeles (UCLA) datasets.
arXiv Detail & Related papers (2024-08-25T13:15:55Z) - Enhancing Cognitive Workload Classification Using Integrated LSTM Layers and CNNs for fNIRS Data Analysis [13.74551296919155]
This paper explores the im-pact of Long Short-Term Memory layers on the effectiveness of Convolutional Neural Networks (CNNs) within deep learning models.
By integrating LSTM layers, the model can capture temporal dependencies in the fNIRS data, al-lowing for a more comprehensive understanding of cognitive states.
arXiv Detail & Related papers (2024-07-22T11:28:34Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - SEDMamba: Enhancing Selective State Space Modelling with Bottleneck Mechanism and Fine-to-Coarse Temporal Fusion for Efficient Error Detection in Robot-Assisted Surgery [7.863539113283565]
We propose a novel hierarchical model named SEDMamba, which incorporates the selective state space model (SSM) into surgical error detection.
SEDMamba enhances selective SSM with a bottleneck mechanism and fine-to-coarse temporal fusion (FCTF) to detect and temporally localize surgical errors in long videos.
Our work also contributes the first-of-its-kind, frame-level, in-vivo surgical error dataset to support error detection in real surgical cases.
arXiv Detail & Related papers (2024-06-22T19:20:35Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A Novel Solution of an Elastic Net Regularization for Dementia Knowledge
Discovery using Deep Learning [10.839925851203786]
This paper aims to increase the accuracy and reduce the processing time of classification through Deep Learning Architecture.
The proposed system consists of Convolutional Neural Network (CNN) to enhance the accuracy of classification and prediction.
In addition to that, the proposed method has improved the classification accuracy by 5% on average and reduced the processing time by 30 40 seconds on average.
arXiv Detail & Related papers (2021-08-21T11:53:25Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
We introduce Conditional Independent Components Analysis (Conditional ICA): a fast functional Magnetic Resonance Imaging (fMRI) data augmentation technique.
We show that Conditional ICA is successful at synthesizing data indistinguishable from observations, and that it yields gains in classification accuracy in brain decoding problems.
arXiv Detail & Related papers (2021-07-11T22:36:14Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.