論文の概要: 3D Shape Generation and Completion through Point-Voxel Diffusion
- arxiv url: http://arxiv.org/abs/2104.03670v2
- Date: Sun, 11 Apr 2021 22:11:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-13 12:17:24.944893
- Title: 3D Shape Generation and Completion through Point-Voxel Diffusion
- Title(参考訳): ポイント・ボクセル拡散による3次元形状生成と完成
- Authors: Linqi Zhou, Yilun Du, Jiajun Wu
- Abstract要約: 3次元形状の確率的生成モデリングのための新しいアプローチを提案する。
Point-Voxel Diffusion (PVD) は、無条件形状生成と条件付き多モード形状完成のための統一的確率的定式化である。
PVDは、観測点雲データからガウスノイズへの拡散過程を逆転させ、(条件付き)確率関数に束縛された変動下限を最適化することにより、一連のデノナイズステップと見なすことができる。
- 参考スコア(独自算出の注目度): 24.824065748889048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach for probabilistic generative modeling of 3D
shapes. Unlike most existing models that learn to deterministically translate a
latent vector to a shape, our model, Point-Voxel Diffusion (PVD), is a unified,
probabilistic formulation for unconditional shape generation and conditional,
multi-modal shape completion. PVD marries denoising diffusion models with the
hybrid, point-voxel representation of 3D shapes. It can be viewed as a series
of denoising steps, reversing the diffusion process from observed point cloud
data to Gaussian noise, and is trained by optimizing a variational lower bound
to the (conditional) likelihood function. Experiments demonstrate that PVD is
capable of synthesizing high-fidelity shapes, completing partial point clouds,
and generating multiple completion results from single-view depth scans of real
objects.
- Abstract(参考訳): 本稿では,3次元形状の確率的生成モデルを提案する。
潜在ベクトルを形状に決定論的に変換することを学ぶ既存のモデルと異なり、我々のモデルであるpoint-voxel diffusion(pvd)は無条件形状生成と条件付きマルチモーダル形状完了のための統一的確率的定式化である。
PVDは3次元形状のハイブリッド・ポイント・ボクセル表現で拡散モデルを合成する。
観測された点雲データからガウス雑音への拡散過程を反転させ、(条件付き)確率関数に対する変分下限を最適化することで、一連の分節化ステップと見なすことができる。
実験により、PVDは高忠実度形状を合成し、部分点雲を完了し、実物の単視点深度スキャンから複数の完了結果を生成することができることが示された。
関連論文リスト
- Deformable 3D Shape Diffusion Model [21.42513407755273]
包括的3次元形状操作を容易にする新しい変形可能な3次元形状拡散モデルを提案する。
点雲生成における最先端性能とメッシュ変形の競争結果を示す。
本手法は,バーチャルリアリティの領域において,3次元形状操作の進展と新たな機会の解放のためのユニークな経路を提供する。
論文 参考訳(メタデータ) (2024-07-31T08:24:42Z) - Consistent3D: Towards Consistent High-Fidelity Text-to-3D Generation with Deterministic Sampling Prior [87.55592645191122]
スコア蒸留サンプリング(SDS)とその変種は、テキスト・ツー・3D世代の発展を大幅に加速させたが、幾何崩壊やテクスチャの低下に弱い。
テキストから3D生成に先立ってODE決定論的サンプリングを探索する新しい「一貫性3D」手法を提案する。
実験により,高忠実で多様な3Dオブジェクトと大規模シーンの生成にConsistent3Dの有効性が示された。
論文 参考訳(メタデータ) (2024-01-17T08:32:07Z) - PolyDiff: Generating 3D Polygonal Meshes with Diffusion Models [15.846449180313778]
PolyDiffは、現実的で多様な3Dポリゴンメッシュを直接生成できる最初の拡散ベースのアプローチである。
我々のモデルは、下流3Dに統合可能な高品質な3D多角形メッシュを生成することができる。
論文 参考訳(メタデータ) (2023-12-18T18:19:26Z) - DiffComplete: Diffusion-based Generative 3D Shape Completion [114.43353365917015]
3次元レンジスキャンにおける形状完成のための拡散に基づく新しいアプローチを提案する。
私たちはリアリズム、マルチモダリティ、高忠実さのバランスを取ります。
DiffCompleteは2つの大規模3次元形状補完ベンチマークに新しいSOTA性能を設定する。
論文 参考訳(メタデータ) (2023-06-28T16:07:36Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
拡散確率場(DPF)は、距離空間上で定義された連続関数の分布をモデル化する。
本稿では,局所構造学習に着目したビューワイズサンプリングアルゴリズムによる新しいモデルを提案する。
モデルは、複数のモダリティを統一しながら、高解像度のデータを生成するためにスケールすることができる。
論文 参考訳(メタデータ) (2023-05-24T03:32:03Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and
Manipulation [54.09274684734721]
本稿では,ウェーブレット領域における連続的な暗黙表現の直接生成モデルを用いて,3次元形状の生成,反転,操作を行う新しい手法を提案する。
具体的には、1対の粗い係数と細部係数の体積を持つコンパクトなウェーブレット表現を提案し、トランケートされた符号付き距離関数とマルチスケールの生体直交ウェーブレットを介して3次元形状を暗黙的に表現する。
エンコーダネットワークを共同でトレーニングすることで,形状を反転させる潜在空間を学習することができる。
論文 参考訳(メタデータ) (2023-02-01T02:47:53Z) - Modiff: Action-Conditioned 3D Motion Generation with Denoising Diffusion
Probabilistic Models [58.357180353368896]
本稿では,現実的で多様な3D骨格に基づく運動生成問題に対処するために,拡散確率モデル(DDPM)の利点を生かした条件付きパラダイムを提案する。
我々はDDPMを用いてカテゴリ的動作で条件付けられた動作列の可変数を合成する先駆的な試みである。
論文 参考訳(メタデータ) (2023-01-10T13:15:42Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation [52.038346313823524]
本稿では,ウェーブレット領域における連続的暗黙表現の直接生成モデリングを可能にする3次元形状生成の新しい手法を提案する。
具体的には、1対の粗い係数と細部係数の体積を持つコンパクトなウェーブレット表現を提案し、トランケートされた符号付き距離関数とマルチスケールの生体直交ウェーブレットを介して3次元形状を暗黙的に表現する。
論文 参考訳(メタデータ) (2022-09-19T02:51:48Z) - Diffusion Probabilistic Models for 3D Point Cloud Generation [12.257593992442732]
我々は,様々な3次元視覚タスクにおいて重要なポイントクラウド生成の確率モデルを提案する。
非平衡熱力学における拡散過程にインスパイアされ、熱浴に接触した熱力学系における点雲の点を粒子とみなす。
我々は、トレーニングのための閉形式における変分境界を導出し、モデルの実装を提供する。
論文 参考訳(メタデータ) (2021-03-02T03:56:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。