論文の概要: Analyzing the impact of semantic LoD3 building models on image-based vehicle localization
- arxiv url: http://arxiv.org/abs/2407.21432v1
- Date: Wed, 31 Jul 2024 08:33:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:22:17.998706
- Title: Analyzing the impact of semantic LoD3 building models on image-based vehicle localization
- Title(参考訳): セマンティックLoD3ビルディングモデルが画像ベース車両のローカライゼーションに及ぼす影響の解析
- Authors: Antonia Bieringer, Olaf Wysocki, Sebastian Tuttas, Ludwig Hoegner, Christoph Holst,
- Abstract要約: 本稿では,高精細なセマンティック3Dビルディングモデルに対応する画像特徴を活かして,カーローカライズのための新しいアプローチを提案する。
この研究は、レベル・オブ・ディテール2(LoD2)とレベル・オブ・ディテール3(LoD3)モデルを用いて結果を評価し、ファサードに富んだモデルの方が精度が高いかどうかを分析する。
- 参考スコア(独自算出の注目度): 0.1398098625978622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous navigation applications rely on data from global navigation satellite systems (GNSS), even though their accuracy is compromised in urban areas, posing a significant challenge, particularly for precise autonomous car localization. Extensive research has focused on enhancing localization accuracy by integrating various sensor types to address this issue. This paper introduces a novel approach for car localization, leveraging image features that correspond with highly detailed semantic 3D building models. The core concept involves augmenting positioning accuracy by incorporating prior geometric and semantic knowledge into calculations. The work assesses outcomes using Level of Detail 2 (LoD2) and Level of Detail 3 (LoD3) models, analyzing whether facade-enriched models yield superior accuracy. This comprehensive analysis encompasses diverse methods, including off-the-shelf feature matching and deep learning, facilitating thorough discussion. Our experiments corroborate that LoD3 enables detecting up to 69\% more features than using LoD2 models. We believe that this study will contribute to the research of enhancing positioning accuracy in GNSS-denied urban canyons. It also shows a practical application of under-explored LoD3 building models on map-based car positioning.
- Abstract(参考訳): 多くのナビゲーションアプリケーションはグローバルナビゲーション衛星システム(GNSS)のデータに依存しているが、その精度は都市部で損なわれており、特に正確な自動運転車のローカライゼーションにおいて重要な課題となっている。
広汎な研究は、この問題に対処するために様々なセンサータイプを統合することで、ローカライズ精度の向上に重点を置いている。
本稿では,高精細なセマンティック3Dビルディングモデルに対応する画像特徴を活かして,カーローカライズのための新しいアプローチを提案する。
中心となる概念は、事前の幾何学的知識と意味論的知識を計算に取り入れることで、位置決め精度を増大させることである。
この研究は、レベル・オブ・ディテール2(LoD2)とレベル・オブ・ディテール3(LoD3)モデルを用いて結果を評価し、ファサードに富んだモデルの方が精度が高いかどうかを分析する。
この包括的分析は、既製の特徴マッチングやディープラーニングなど、さまざまな手法を含み、徹底的な議論を促進する。
我々の実験は、LoD3がLoD2モデルよりも最大で69倍の機能を検出できることを示している。
本研究は, GNSSを用いた都市峡谷における位置決め精度の向上研究に寄与すると考えられる。
また、地図に基づく車の位置決めに未探索のLoD3ビルディングモデルの実用的応用を示す。
関連論文リスト
- 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
我々は,LiDARとカメラのペアを連続的に利用して事前学習の目的を確立するための,新しいフレームワークであるSuperFlowを紹介する。
学習効率をさらに向上するため,カメラビューから抽出した知識の整合性を高めるプラグイン・アンド・プレイ・ビュー・一貫性モジュールを組み込んだ。
論文 参考訳(メタデータ) (2024-07-08T17:59:54Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3Dは3Dシーン理解モデルの信頼性をベンチマークし精査する先駆的な試みである。
10種類の3Dデータセットにわたる28の最先端モデルを評価した。
本稿では,3次元モデルのキャリブレーション向上を目的とした,深度対応のスケーリング手法であるDeptSを紹介する。
論文 参考訳(メタデータ) (2024-03-25T17:59:59Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Exploring and Improving the Spatial Reasoning Abilities of Large
Language Models [0.0]
LLM(Large Language Models)は、シーケンスモデリングのツールである。
本稿では,ChatGPT-3.5,ChatGPT-4,Llama 2 7Bの3次元ロボット軌道データと対向する性能について検討する。
3Dトラジェクトリデータに33%の改善をもたらす新しいプレフィックスベースのプロンプト機構を導入する。
論文 参考訳(メタデータ) (2023-12-02T07:41:46Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能することがわかった。
本研究は,3次元物体検出の高性能化のために,詳細な幾何学的モデリングが不可欠である,という一般的な直観に挑戦する。
論文 参考訳(メタデータ) (2023-05-08T17:59:14Z) - Structure Aware and Class Balanced 3D Object Detection on nuScenes
Dataset [0.0]
NuTonomyのnuScenesデータセットは、KITTIのような一般的なデータセットを大きく拡張している。
このモデルの局所化精度は、ダウンスケールされた特徴写像における空間情報の損失に影響される。
本稿では,3次元点雲の構造情報をフル活用した補助ネットワークを設計することで,CBGSモデルの性能を向上させることを提案する。
論文 参考訳(メタデータ) (2022-05-25T06:18:49Z) - OccAM's Laser: Occlusion-based Attribution Maps for 3D Object Detectors
on LiDAR Data [8.486063950768694]
本稿では,LiDAR点雲における3次元物体検出のための属性マップを生成する手法を提案する。
これらのマップは、特定のオブジェクトを予測する上で、各3Dポイントの重要性を示している。
本稿では,属性マップの詳細な評価を行い,それらが解釈可能かつ高情報であることを示す。
論文 参考訳(メタデータ) (2022-04-13T18:00:30Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDARベースの3Dオブジェクト検出は、自動運転車に大きな影響を与える。
LiDARの固有特性の制限により、センサーから遠く離れた物体において、より少ない点が収集される。
そこで本研究では,SIENetという2段階の3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T07:45:09Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
私たちは3Dポイントクラウドに3D完全畳み込みネットワークを活用しています。
本稿では,3次元点ごとに検出スコアと記述特徴の両方を密に予測する,新しい,実践的な学習機構を提案する。
本手法は,屋内と屋外の両方のシナリオで最先端の手法を実現する。
論文 参考訳(メタデータ) (2020-03-06T12:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。