Multi-agent Assessment with QoS Enhancement for HD Map Updates in a Vehicular Network
- URL: http://arxiv.org/abs/2407.21460v1
- Date: Wed, 31 Jul 2024 09:17:09 GMT
- Title: Multi-agent Assessment with QoS Enhancement for HD Map Updates in a Vehicular Network
- Authors: Jeffrey Redondo, Nauman Aslam, Juan Zhang, Zhenhui Yuan,
- Abstract summary: Reinforcement Learning (RL) algorithms have been used to address the challenging problems in the offloading process of vehicular ad hoc networks (VANET)
Deep Q-learning (DQN) and Actor-critic at the autonomous vehicle (AV) may lead to an increase in the computational load, causing a heavy burden on the computational devices and higher costs.
In this paper, we assess the scalability of an application utilizing a Q-learning single-agent solution in a distributed multi-agent environment.
- Score: 8.853779271331508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) algorithms have been used to address the challenging problems in the offloading process of vehicular ad hoc networks (VANET). More recently, they have been utilized to improve the dissemination of high-definition (HD) Maps. Nevertheless, implementing solutions such as deep Q-learning (DQN) and Actor-critic at the autonomous vehicle (AV) may lead to an increase in the computational load, causing a heavy burden on the computational devices and higher costs. Moreover, their implementation might raise compatibility issues between technologies due to the required modifications to the standards. Therefore, in this paper, we assess the scalability of an application utilizing a Q-learning single-agent solution in a distributed multi-agent environment. This application improves the network performance by taking advantage of a smaller state, and action space whilst using a multi-agent approach. The proposed solution is extensively evaluated with different test cases involving reward function considering individual or overall network performance, number of agents, and centralized and distributed learning comparison. The experimental results demonstrate that the time latencies of our proposed solution conducted in voice, video, HD Map, and best-effort cases have significant improvements, with 40.4%, 36%, 43%, and 12% respectively, compared to the performances with the single-agent approach.
Related papers
- Coverage-aware and Reinforcement Learning Using Multi-agent Approach for HD Map QoS in a Realistic Environment [8.853779271331508]
One effective way to optimize the offloading process is by minimizing the transmission time.
This is particularly true in a Vehicular Adhoc Network (VANET) where vehicles frequently download and upload High-definition (HD) map data.
arXiv Detail & Related papers (2024-07-19T12:40:07Z) - ILCAS: Imitation Learning-Based Configuration-Adaptive Streaming for
Live Video Analytics with Cross-Camera Collaboration [53.29046841099947]
This paper proposes the first imitation learning (IL) based configuration-adaptive live video analytics (VA) streaming system.
ILCAS trains the agent with demonstrations collected from the expert which is designed as an offline optimal policy.
experiments confirm the superiority of ILCAS compared with state-of-the-art solutions, with 2-20.9% improvement of mean accuracy and 19.9-85.3% reduction of chunk upload lag.
arXiv Detail & Related papers (2023-08-19T16:20:59Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents.
We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation.
We propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-07-29T10:29:06Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Multi-Agent Distributed Reinforcement Learning for Making Decentralized
Offloading Decisions [7.326507804995567]
We formulate computation offloading as a decentralized decision-making problem with autonomous agents.
We design an interaction mechanism that incentivizes agents to align private and system goals by balancing between competition and cooperation.
For a dynamic environment, we propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-04-05T15:01:48Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - QoS-SLA-Aware Artificial Intelligence Adaptive Genetic Algorithm for
Multi-Request Offloading in Integrated Edge-Cloud Computing System for the
Internet of Vehicles [14.978000952939404]
Internet of Vehicles (IoV) over Vehicular Ad-hoc Networks (VANETS) is an emerging technology enabling the development of smart cities applications for safer, efficient, and pleasant travel.
Considering vehicles limited computational and storage capabilities, applications requests are offloaded into an integrated edge-cloud computing system.
This paper proposes a novel Artificial Intelligence (AI) deadline-SLA-aware genetic algorithm (GA) for multi-request offloading in a heterogeneous edge-cloud computing system.
arXiv Detail & Related papers (2022-01-21T10:11:55Z) - Multi-Scale Aligned Distillation for Low-Resolution Detection [68.96325141432078]
This paper focuses on boosting the performance of low-resolution models by distilling knowledge from a high- or multi-resolution model.
On several instance-level detection tasks and datasets, the low-resolution models trained via our approach perform competitively with high-resolution models trained via conventional multi-scale training.
arXiv Detail & Related papers (2021-09-14T12:53:35Z) - Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs
and Convolutional Networks [9.449650062296824]
We present a strategy aiming at distributing inference requests to a swarm of resource-constrained UAVs that classifies captured images on-board.
We formulate the model as an optimization problem that minimizes the latency between acquiring images and making the final decisions.
We introduce an online solution, namely DistInference, to find the layers placement strategy that gives the best latency among the available UAVs.
arXiv Detail & Related papers (2021-07-09T19:47:02Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
We study the ability of autonomous vehicles to improve the throughput of a bottleneck using a fully decentralized control scheme in a mixed autonomy setting.
We apply multi-agent reinforcement algorithms to this problem and demonstrate that significant improvements in bottleneck throughput, from 20% at a 5% penetration rate to 33% at a 40% penetration rate, can be achieved.
arXiv Detail & Related papers (2020-10-30T22:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.