論文の概要: Can LLMs "Reason" in Music? An Evaluation of LLMs' Capability of Music Understanding and Generation
- arxiv url: http://arxiv.org/abs/2407.21531v1
- Date: Wed, 31 Jul 2024 11:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:02:39.942131
- Title: Can LLMs "Reason" in Music? An Evaluation of LLMs' Capability of Music Understanding and Generation
- Title(参考訳): 音楽におけるLLMの「推論」は可能か? : LLMの音楽理解・生成能力の評価
- Authors: Ziya Zhou, Yuhang Wu, Zhiyue Wu, Xinyue Zhang, Ruibin Yuan, Yinghao Ma, Lu Wang, Emmanouil Benetos, Wei Xue, Yike Guo,
- Abstract要約: シンボリック・ミュージック(英: Symbolic Music)は、言語に似た、離散的な記号で符号化される。
近年,大言語モデル (LLM) を記号的音楽領域に適用する研究が進められている。
本研究は, シンボリック・ミュージック・プロセッシングにおけるLLMの能力と限界について, 徹底的に検討する。
- 参考スコア(独自算出の注目度): 31.825105824490464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symbolic Music, akin to language, can be encoded in discrete symbols. Recent research has extended the application of large language models (LLMs) such as GPT-4 and Llama2 to the symbolic music domain including understanding and generation. Yet scant research explores the details of how these LLMs perform on advanced music understanding and conditioned generation, especially from the multi-step reasoning perspective, which is a critical aspect in the conditioned, editable, and interactive human-computer co-creation process. This study conducts a thorough investigation of LLMs' capability and limitations in symbolic music processing. We identify that current LLMs exhibit poor performance in song-level multi-step music reasoning, and typically fail to leverage learned music knowledge when addressing complex musical tasks. An analysis of LLMs' responses highlights distinctly their pros and cons. Our findings suggest achieving advanced musical capability is not intrinsically obtained by LLMs, and future research should focus more on bridging the gap between music knowledge and reasoning, to improve the co-creation experience for musicians.
- Abstract(参考訳): シンボリック・ミュージック(英: Symbolic Music)は、言語に似た、離散的な記号で符号化される。
近年, GPT-4 や Llama2 などの大規模言語モデル (LLM) を理解・生成を含む記号的音楽領域に適用する研究が進んでいる。
しかし、Scant Researchは、これらのLLMが高度な音楽理解と条件付き生成、特に、条件付き、編集可能、インタラクティブな人-コンピュータの共同創造プロセスにおいて重要な側面である多段階推論の観点から、どのように振舞うかを詳細に調査している。
本研究は, シンボリック・ミュージック・プロセッシングにおけるLLMの能力と限界について, 徹底的に検討する。
曲レベルの多段階音楽推論において,現在のLLMは低性能であり,複雑な音楽課題に対処する際,学習した音楽知識の活用に失敗することが多い。
LLMの反応の分析は、その長所と短所を明確に強調している。
今後の研究は、音楽の知識と推論のギャップを埋めることに集中して、ミュージシャンの共創体験を改善することにある。
関連論文リスト
- A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression [8.640838598568605]
我々は,Large Language Models (LLMs) を用いたマルチモーダルコンテンツ分析の新しいワークフローに従って,ケーススタディを実施している。
LLMのビデオアノテーション機能をテストするために,うつ病に関する25の短いビデオから抽出した203を解析した。
論文 参考訳(メタデータ) (2024-06-27T21:03:56Z) - ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - SongComposer: A Large Language Model for Lyric and Melody Composition in
Song Generation [88.33522730306674]
SongComposerは、シンボリックな歌の表現でメロディーや歌詞を理解し、生成することができた。
我々は、人間が音楽のためにデザインした成熟した効率的な方法である象徴的な歌の表現に頼っている。
広範な実験により、SongComposerは、歌詞からメロディ生成、メロディから歌詞への生成、歌の継続、テキストから歌への生成において優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-02-27T16:15:28Z) - ChatMusician: Understanding and Generating Music Intrinsically with LLM [81.48629006702409]
ChatMusicianは、固有の音楽能力を統合するオープンソースのLarge Language Models(LLM)である。
外部のマルチモーダル・ニューラル構造やトークンーザを使わずに、純粋なテキスト・トークンーザで音楽を理解して生成することができる。
我々のモデルは、テキスト、コード、メロディ、モチーフ、音楽形式など、よく構造化されたフル長の音楽を構成することができる。
論文 参考訳(メタデータ) (2024-02-25T17:19:41Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs [0.0]
本研究では,大規模言語モデル(LLM)の性能について,様々な推論課題について検討する。
その結果, LLMは類推的, 道徳的推論において優れているが, 空間的推論タスクにおいて, 熟達に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2023-03-22T22:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。