論文の概要: ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2407.21534v2
- Date: Sun, 29 Sep 2024 12:12:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 13:40:32.879909
- Title: ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
- Title(参考訳): ControlMLLM:マルチモーダル大規模言語モデルのための学習不要なビジュアルプロンプト学習
- Authors: Mingrui Wu, Xinyue Cai, Jiayi Ji, Jiale Li, Oucheng Huang, Gen Luo, Hao Fei, Guannan Jiang, Xiaoshuai Sun, Rongrong Ji,
- Abstract要約: マルチモーダル大言語モデル(MLLM)に視覚的参照を注入する学習自由手法を提案する。
MLLMにおけるテキストプロンプトトークンと視覚トークンの関係を観察する。
我々は,エネルギー関数に基づいて学習可能な視覚トークンを最適化し,注目マップにおける参照領域の強度を高める。
- 参考スコア(独自算出の注目度): 73.34709921061928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a training-free method to inject visual referring into Multimodal Large Language Models (MLLMs) through learnable visual token optimization. We observe the relationship between text prompt tokens and visual tokens in MLLMs, where attention layers model the connection between them. Our approach involves adjusting visual tokens from the MLP output during inference, controlling which text prompt tokens attend to which visual tokens. We optimize a learnable visual token based on an energy function, enhancing the strength of referential regions in the attention map. This enables detailed region description and reasoning without the need for substantial training costs or model retraining. Our method offers a promising direction for integrating referential abilities into MLLMs. Our method support referring with box, mask, scribble and point. The results demonstrate that our method exhibits controllability and interpretability.
- Abstract(参考訳): 本研究では,学習可能な視覚トークン最適化により,MLLM(Multimodal Large Language Models)に視覚参照を注入する学習自由手法を提案する。
MLLMにおけるテキストプロンプトトークンと視覚トークンの関係を観察する。
提案手法では,推測中にMLP出力から視覚トークンを調整し,どのテキストプロンプトがどの視覚トークンに参加するかを制御する。
我々は,エネルギー関数に基づいて学習可能な視覚トークンを最適化し,注目マップにおける参照領域の強度を高める。
これにより、相当なトレーニングコストやモデル再トレーニングを必要とせずに、詳細な地域説明と推論が可能になる。
本手法は,MLLMに参照能力を統合するための有望な方向を提供する。
我々の方法は、ボックス、マスク、スクリブル、ポイントを参照することをサポートしている。
その結果,本手法は制御性と解釈性を示すことがわかった。
関連論文リスト
- Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Enhancing Instruction-Following Capability of Visual-Language Models by Reducing Image Redundancy [37.471419716572086]
LLM(Large Language Model)とMLLM(Multimodal Large Language Model)の命令追従能力には大きなギャップがある。
本稿では,このギャップを軽減するために,VMTC(Visual-Modality Token Compression)とCMAI(Cross-Modality Attention Inhibition)戦略を提案する。
論文 参考訳(メタデータ) (2024-11-23T05:03:32Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
本稿では,既存のアプローチよりもトレーニングの少ない任意の参照視覚的プロンプトの理解を促進するための,MLLM(Multimodal Large Language Models)を提案する。
本手法は,視覚的プロンプトを,MLLMに理解可能な特定の空間領域を伝達する空間概念として応用する。
我々はまた、MLLMの領域レベルの理解を視覚的プロンプトを参照する特定の形式にさらに引き離すための幾何非依存学習パラダイム(GAL)を提案する。
論文 参考訳(メタデータ) (2024-09-25T08:22:00Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。