論文の概要: Between the AI and Me: Analysing Listeners' Perspectives on AI- and Human-Composed Progressive Metal Music
- arxiv url: http://arxiv.org/abs/2407.21615v1
- Date: Wed, 31 Jul 2024 14:03:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:27:41.680732
- Title: Between the AI and Me: Analysing Listeners' Perspectives on AI- and Human-Composed Progressive Metal Music
- Title(参考訳): AIと私:AIと人間によるプログレッシブメタル音楽における聴取者の視点の分析
- Authors: Pedro Sarmento, Jackson Loth, Mathieu Barthet,
- Abstract要約: 我々は,ロックミュージックをコントロールグループとして利用し,AIと人為的に生成するプログレッシブメタルに対する参加者の視点を探る。
本稿では,世代タイプ(人間対AI),ジャンル(プログレッシブメタル対ロック),キュレーションプロセス(ランダム対チェリーピック)の効果を評価するための混合手法を提案する。
本研究は,AI音楽生成におけるジャンル別特化を実現するために,ファインチューニングを用いたことを検証する。
人間の音楽に類似した評価を受けるAI生成の抜粋はいくつかあったが、聴取者は人間の作曲を好んだ。
- 参考スコア(独自算出の注目度): 1.2874569408514918
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative AI models have recently blossomed, significantly impacting artistic and musical traditions. Research investigating how humans interact with and deem these models is therefore crucial. Through a listening and reflection study, we explore participants' perspectives on AI- vs human-generated progressive metal, in symbolic format, using rock music as a control group. AI-generated examples were produced by ProgGP, a Transformer-based model. We propose a mixed methods approach to assess the effects of generation type (human vs. AI), genre (progressive metal vs. rock), and curation process (random vs. cherry-picked). This combines quantitative feedback on genre congruence, preference, creativity, consistency, playability, humanness, and repeatability, and qualitative feedback to provide insights into listeners' experiences. A total of 32 progressive metal fans completed the study. Our findings validate the use of fine-tuning to achieve genre-specific specialization in AI music generation, as listeners could distinguish between AI-generated rock and progressive metal. Despite some AI-generated excerpts receiving similar ratings to human music, listeners exhibited a preference for human compositions. Thematic analysis identified key features for genre and AI vs. human distinctions. Finally, we consider the ethical implications of our work in promoting musical data diversity within MIR research by focusing on an under-explored genre.
- Abstract(参考訳): ジェネレーティブAIモデルは、最近花を咲かせ、芸術や音楽の伝統に大きな影響を与えている。
したがって、人間がどのようにこれらのモデルと相互作用し、評価するかを研究することが重要である。
リスニング・リフレクション研究を通じて、参加者のAI対人為的プログレッシブメタルに対する視点を象徴的な形式で探求し、ロックミュージックをコントロールグループとして利用した。
AI生成の例は、TransformerベースのモデルであるProgGPによって作成された。
本稿では,世代タイプ(人間対AI),ジャンル(プログレッシブメタル対ロック),キュレーションプロセス(ランダム対チェリーピック)の効果を評価するための混合手法を提案する。
これは、ジャンルの一致、好み、創造性、一貫性、遊びやすさ、人間性、再現性に関する定量的フィードバックと、聞き手の体験に対する洞察を提供する定性的なフィードバックを組み合わせたものである。
合計32人のプログレッシブメタルファンがこの研究を完了した。
我々の研究は,AI生成したロックとプログレッシブメタルを区別できるため,AI音楽生成におけるジャンル別特化を実現するための微調整の活用を検証した。
人間の音楽に類似した評価を受けるAI生成の抜粋はいくつかあったが、聴取者は人間の作曲を好んだ。
テーマ分析は、ジャンルとAIと人間の区別の主な特徴を特定した。
最後に,MIR研究における音楽データ多様性の促進に向けた我々の研究の倫理的意義について考察する。
関連論文リスト
- DAIRHuM: A Platform for Directly Aligning AI Representations with Human Musical Judgments applied to Carnatic Music [0.0]
本稿では,AI音楽モデルRepresentationsとHuman Musical judgments(DAIRHuM)の直接的なアライメントを探求するプラットフォームを提案する。
ミュージシャンや実験家が音楽録音のデータセットに類似点をラベル付けできるように設計され、事前訓練されたモデルのラベルとのアライメントを調べる。
その結果、リズムの調和の人的判断とモデルアライメントに関する顕著な知見が得られ、また、リズム知覚とカーナティック音楽特有の音楽類似性判断に重要な違いが浮き彫りにされた。
論文 参考訳(メタデータ) (2024-11-22T13:04:51Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
本研究では、偏見がAIと人為的コンテンツの知覚をどう形成するかを考察する。
ラベル付きおよびラベルなしコンテンツに対するヒトのラッカーの反応について検討した。
論文 参考訳(メタデータ) (2024-09-29T04:31:45Z) - A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - Foundation Models for Music: A Survey [77.77088584651268]
ファンデーションモデル(FM)は音楽を含む様々な分野に大きな影響を与えている。
本総説では,音楽の事前学習モデルと基礎モデルについて概観する。
論文 参考訳(メタデータ) (2024-08-26T15:13:14Z) - A Survey of Music Generation in the Context of Interaction [3.6522809408725223]
機械学習は、メロディーとポリフォニックの両方の曲の作曲と生成に成功している。
これらのモデルのほとんどは、ライブインタラクションによる人間と機械の共創には適していない。
論文 参考訳(メタデータ) (2024-02-23T12:41:44Z) - Exploring Variational Auto-Encoder Architectures, Configurations, and
Datasets for Generative Music Explainable AI [7.391173255888337]
音楽と芸術のための生成AIモデルは、ますます複雑で理解しづらい。
生成AIモデルをより理解しやすいものにするためのアプローチの1つは、生成AIモデルに少数の意味的に意味のある属性を課すことである。
本稿では,変分自動エンコーダモデル(MeasureVAEとAdversarialVAE)の異なる組み合わせが音楽生成性能に与える影響について,系統的な検討を行った。
論文 参考訳(メタデータ) (2023-11-14T17:27:30Z) - A Comprehensive Survey for Evaluation Methodologies of AI-Generated
Music [14.453416870193072]
本研究の目的は,AI生成音楽を評価するための主観的,客観的,複合的な方法論を包括的に評価することである。
究極的には、音楽評価分野における生成的AIの統合のための貴重な参考資料を提供する。
論文 参考訳(メタデータ) (2023-08-26T02:44:33Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Music Harmony Generation, through Deep Learning and Using a
Multi-Objective Evolutionary Algorithm [0.0]
本稿では,ポリフォニック音楽生成のための遺伝的多目的進化最適化アルゴリズムを提案する。
ゴールの1つは音楽の規則と規則であり、他の2つのゴール、例えば音楽の専門家や普通のリスナーのスコアとともに、最も最適な反応を得るために進化のサイクルに適合する。
その結果,提案手法は,聞き手を引き寄せながら文法に従う調和音とともに,所望のスタイルや長さの難易度と快適さを生み出すことができることがわかった。
論文 参考訳(メタデータ) (2021-02-16T05:05:54Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。