Enhancing the Harrow-Hassidim-Lloyd (HHL) algorithm in systems with large condition numbers
- URL: http://arxiv.org/abs/2407.21641v3
- Date: Wed, 9 Oct 2024 04:46:09 GMT
- Title: Enhancing the Harrow-Hassidim-Lloyd (HHL) algorithm in systems with large condition numbers
- Authors: Peniel Bertrand Tsemo, Akshaya Jayashankar, K. Sugisaki, Nishanth Baskaran, Sayan Chakraborty, V. S. Prasannaa,
- Abstract summary: We demonstrate the ability of Psi-HHL to handle situations involving large $mathcalkappa$ matrices.
We consider matrices up to size $256 times 256$ that reach $mathcalkappa$ of about 466.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although the Harrow-Hassidim-Lloyd (HHL) algorithm offers an exponential speedup in system size for treating linear equations of the form $A\vec{x}=\vec{b}$ on quantum computers when compared to their traditional counterparts, it faces a challenge related to the condition number ($\mathcal{\kappa}$) scaling of the $A$ matrix. In this work, we address the issue by introducing the post-selection-improved HHL (Psi-HHL) approach that involves a simple yet effective modification of the HHL algorithm to extract a feature of $|x\rangle$, and which leads to achieving optimal behaviour in $\mathcal{\kappa}$ (linear scaling) for large condition number situations. This has the important practical implication of having to use substantially fewer shots relative to the traditional HHL algorithm. We carry out two sets of simulations, where we go up to 26-qubit calculations, to demonstrate the ability of Psi-HHL to handle situations involving large $\mathcal{\kappa}$ matrices via: (a) a set of toy matrices, for which we go up to size $64 \times 64$ and $\mathcal{\kappa}$ values of up to $\approx$ 1 million, and (b) a deep-dive into quantum chemistry, where we consider matrices up to size $256 \times 256$ that reach $\mathcal{\kappa}$ of about 466. The molecular systems that we consider are Li$_{\mathrm{2}}$, RbH, and CsH. Although the feature of $|x\rangle$ considered in our examples is an overlap between the input and output states of the HHL algorithm, our approach is general and can be applied in principle to any transition matrix element involving $|x\rangle$.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Fast and Practical Quantum-Inspired Classical Algorithms for Solving
Linear Systems [11.929584800629673]
We propose fast and practical quantum-inspired classical algorithms for solving linear systems.
Our main contribution is the application of the heavy ball momentum method to quantum-inspired classical algorithms for solving linear systems.
arXiv Detail & Related papers (2023-07-13T08:46:19Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Sublinear classical and quantum algorithms for general matrix games [11.339580074756189]
We investigate sublinear classical and quantum algorithms for matrix games.
For any fixed $qin (1,2), we solve the matrix game where $mathcalX$ is a $ell_q$-norm unit ball within additive error.
We also provide a corresponding sublinear quantum algorithm that solves the same task in time.
arXiv Detail & Related papers (2020-12-11T17:36:33Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Hutch++: Optimal Stochastic Trace Estimation [75.45968495410048]
We introduce a new randomized algorithm, Hutch++, which computes a $(1 pm epsilon)$ approximation to $tr(A)$ for any positive semidefinite (PSD) $A$.
We show that it significantly outperforms Hutchinson's method in experiments.
arXiv Detail & Related papers (2020-10-19T16:45:37Z) - Quantum-classical algorithms for skewed linear systems with optimized
Hadamard test [10.386115383285288]
We discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases.
Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-logarithmic depth.
We present an algorithm for the special case of a factorized linear system with run time poly-logarithmic in the respective dimensions.
arXiv Detail & Related papers (2020-09-28T12:59:27Z) - An improved quantum-inspired algorithm for linear regression [15.090593955414137]
We give a classical algorithm for linear regression analogous to the quantum matrix inversion algorithm.
We show that quantum computers can achieve at most a factor-of-12 speedup for linear regression in this QRAM data structure setting.
arXiv Detail & Related papers (2020-09-15T17:58:25Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.