論文の概要: TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
- arxiv url: http://arxiv.org/abs/2407.21693v2
- Date: Wed, 7 Aug 2024 13:42:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 14:46:00.856755
- Title: TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
- Title(参考訳): TransferTOD: 転送機能を備えた汎用的な中国語マルチドメインタスク指向対話システム
- Authors: Ming Zhang, Caishuang Huang, Yilong Wu, Shichun Liu, Huiyuan Zheng, Yurui Dong, Yujiong Shen, Shihan Dou, Jun Zhao, Junjie Ye, Qi Zhang, Tao Gui, Xuanjing Huang,
- Abstract要約: タスク指向対話(TOD)システムは、情報収集を含むタスク指向の会話を効率的に処理することを目的としている。
情報収集にTODを正確に、効率的に効果的に活用する方法は、常に重要かつ困難な課題であった。
近年,Large Language Models (LLM) は対話,命令生成,推論において優れていることが実証されている。
- 参考スコア(独自算出の注目度): 46.91749457402889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection. How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task. Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning, and can significantly enhance the performance of TOD through fine-tuning. However, current datasets primarily cater to user-led systems and are limited to predefined specific scenarios and slots, thereby necessitating improvements in the proactiveness, diversity, and capabilities of TOD. In this study, we present a detailed multi-domain task-oriented data construction process for conversations, and a Chinese dialogue dataset generated based on this process, TransferTOD, which authentically simulates human-computer dialogues in 30 popular life service scenarios. Leveraging this dataset, we trained a model called TransferTOD-7B using full-parameter fine-tuning, showcasing notable abilities in slot filling and questioning. Our work has demonstrated its strong generalization capabilities in various downstream scenarios, significantly enhancing both data utilization efficiency and system performance. The data is released in https://github.com/KongLongGeFDU/TransferTOD.
- Abstract(参考訳): タスク指向対話(TOD)システムは、情報収集を含むタスク指向の会話を効率的に処理することを目的としている。
情報収集にTODを正確に、効率的に効果的に活用する方法は、常に重要かつ困難な課題であった。
近年,Large Language Models (LLMs) は対話,命令生成,推論において優れており,微調整によりTODの性能を大幅に向上させることができることが実証されている。
しかし、現在のデータセットはユーザー主導のシステムに特化しており、事前に定義された特定のシナリオやスロットに限定されているため、TODの積極性、多様性、能力の改善が必要である。
本研究では,会話のためのマルチドメインタスク指向データ構築プロセスと,このプロセスに基づいて生成された中国語対話データセットであるTransferTODについて述べる。
このデータセットを利用して、フルパラメータの微調整を用いてTransferTOD-7Bと呼ばれるモデルを訓練し、スロットフィリングや質問における顕著な能力を示しました。
我々の研究は、様々なダウンストリームシナリオにおいて強力な一般化能力を示し、データ利用効率とシステム性能の両方を大幅に向上させた。
データはhttps://github.com/KongLongGeFDU/TransferTODで公開されている。
関連論文リスト
- DFlow: Diverse Dialogue Flow Simulation with Large Language Models [16.209331014315463]
本稿では,合成対話の多様性を高めるために,新たなデータ拡張手法を提案する。
我々は、15の異なる領域に3,886の対話フローからなるタスク指向対話データセットを生成する。
論文 参考訳(メタデータ) (2024-10-18T20:35:28Z) - Training Zero-Shot Generalizable End-to-End Task-Oriented Dialog System Without Turn-level Dialog Annotations [2.757798192967912]
この作業はマルチタスク命令の微調整を用いて、より効率的でスケーラブルなタスク指向対話システムを構築する。
提案手法は,アノテートされたデータに基づいて訓練された最先端モデルと,市販のChatGPTモデルから10億のパラメータを比較検討する。
論文 参考訳(メタデータ) (2024-07-21T04:52:38Z) - Efficient Data Generation for Source-grounded Information-seeking Dialogs: A Use Case for Meeting Transcripts [10.829227084902428]
本稿では,Large Language Models (LLMs) を用いたソースグラウンド情報検索ダイアログにおけるデータ生成の実現可能性と有効性について検討する。
私たちはMISeD -- Meeting Information Seeking Dialogsデータセットを作ります。
MISeDの微調整は、完全な手動データによる微調整に匹敵する応答生成品質を提供すると同時に、属性品質を改善し、時間と労力を削減する。
論文 参考訳(メタデータ) (2024-05-02T09:35:06Z) - Simulating Task-Oriented Dialogues with State Transition Graphs and Large Language Models [16.94819621353007]
SynTODは、エンドツーエンドのタスク指向対話(TOD)システムを開発するための新しい合成データ生成手法である。
大規模言語モデルを用いたランダムウォークと応答シミュレーションにより多様な構造化された会話を生成する。
実験では,グラフ誘導応答シミュレーションを用いて意図分類,スロット充填,応答関連性を大幅に改善した。
論文 参考訳(メタデータ) (2024-04-23T06:23:34Z) - A Systematic Study of Performance Disparities in Multilingual
Task-Oriented Dialogue Systems [68.76102493999134]
マルチリンガルなタスク指向対話システム間に存在するタスクパフォーマンスの相違を,実証的に分析し,分析する。
我々は現在のToDシステムにおける適応と本質的バイアスの存在を証明した。
本稿では,新しい言語に対するToDデータ収集とシステム開発へのアプローチについて,実践的なヒントを提供する。
論文 参考訳(メタデータ) (2023-10-19T16:41:44Z) - InstructTODS: Large Language Models for End-to-End Task-Oriented
Dialogue Systems [60.53276524369498]
大規模言語モデル(LLM)は自然言語処理(NLP)における多様なタスクに使用されている。
InstructTODSは、ゼロショットのタスク指向対話システムのための新しいフレームワークである。
InstructTODSは、ユーザの意図を動的クエリにシームレスに翻訳するプロキシの信念状態を生成する。
論文 参考訳(メタデータ) (2023-10-13T06:36:26Z) - Enhancing Performance on Seen and Unseen Dialogue Scenarios using
Retrieval-Augmented End-to-End Task-Oriented System [89.40590076430297]
この作業により、単純なキャッシュを通じてより柔軟性のあるTODシステムが可能になる。
我々は,TOD生成中に対話履歴と検索情報の両方を参照・基盤にできるエンドツーエンドTODモデルを訓練する。
非空共同ゴール精度を6.7%向上させるなど,我々のフレームワークの優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2023-08-16T06:52:10Z) - Multi3WOZ: A Multilingual, Multi-Domain, Multi-Parallel Dataset for
Training and Evaluating Culturally Adapted Task-Oriented Dialog Systems [64.40789703661987]
Multi3WOZは、新しいマルチ言語、マルチドメイン、マルチ並列ToDデータセットである。
大規模で、4つの言語で文化的に適応したダイアログを提供する。
最終データセットを生成する複雑なボトムアップデータ収集プロセスについて述べる。
論文 参考訳(メタデータ) (2023-07-26T08:29:42Z) - Leveraging Explicit Procedural Instructions for Data-Efficient Action
Prediction [5.448684866061922]
タスク指向の対話は、しばしばエージェントがユーザ要求を満たすために複雑で多段階の手順を実行する必要がある。
大規模言語モデルは、制約のある環境でこれらの対話を自動化することに成功したが、その広範な展開は、トレーニングに必要なタスク固有の大量のデータによって制限されている。
本稿では,エージェントガイドラインから導出した明示的な指示を利用して対話システムを構築するための,データ効率のよいソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-06T18:42:08Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
言語間アウトラインに基づく対話データセット(COD)は、自然言語の理解を可能にする。
CODは、4つの異なる言語で対話状態の追跡とエンドツーエンドの対話モデリングと評価を可能にする。
論文 参考訳(メタデータ) (2022-01-31T18:11:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。