Artificial Intelligence Approaches for Energy Efficiency: A Review
- URL: http://arxiv.org/abs/2407.21726v1
- Date: Wed, 31 Jul 2024 16:24:52 GMT
- Title: Artificial Intelligence Approaches for Energy Efficiency: A Review
- Authors: Alberto Pasqualetto, Lorenzo Serafini, Michele Sprocatti,
- Abstract summary: United Nations set Sustainable Development Goals and this paper focuses on 7th (Affordable and Clean Energy), 9th (Industries, Innovation and Infrastructure), and 13th (Climate Action) goals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: United Nations set Sustainable Development Goals and this paper focuses on 7th (Affordable and Clean Energy), 9th (Industries, Innovation and Infrastructure), and 13th (Climate Action) goals. Climate change is a major concern in our society; for this reason, a current global objective is to reduce energy waste. This work summarizes all main approaches towards energy efficiency using Artificial Intelligence with a particular focus on multi-agent systems to create smart buildings. It mentions the tight relationship between AI, especially IoT, and Big Data. It explains the application of AI to anomaly detection in smart buildings and a possible classification of Intelligent Energy Management Systems: Direct and Indirect. Finally, some drawbacks of AI approaches and some possible future research focuses are proposed.
Related papers
- Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Toward Cross-Layer Energy Optimizations in AI Systems [4.871463967255196]
Energy efficiency is likely to become the gating factor toward adoption of artificial intelligence.
With the pervasive usage of artificial intelligence (AI) and machine learning (ML) tools and techniques, their energy efficiency is likely to become the gating factor toward adoption.
This is because generative AI (GenAI) models are massive energy hogs.
Inference consumes even more energy, because a model trained once serve millions.
arXiv Detail & Related papers (2024-04-10T01:35:17Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - DeepEn2023: Energy Datasets for Edge Artificial Intelligence [3.0996501197166975]
We propose large-scale energy datasets for edge AI, named DeepEn2023, covering a wide range of kernels, state-of-the-art deep neural network models, and popular edge AI applications.
We anticipate that DeepEn2023 will improve transparency in sustainability in on-device deep learning across a range of edge AI systems and applications.
arXiv Detail & Related papers (2023-11-30T16:54:36Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Low impact agency: review and discussion [0.0]
Powerful artificial intelligence poses an existential threat if the AI decides to drastically change the world in pursuit of its goals.
The hope of low-impact artificial intelligence is to incentivize AI to not do that just because this causes a large impact in the world.
arXiv Detail & Related papers (2023-03-06T13:55:42Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
This paper describes the paradox of an energy-consuming technology serving the ecological challenges of tomorrow.
It draws on numerous examples from AI for Green players to present use cases and concrete examples.
The environmental dimension is part of the broader ethical problem of AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
arXiv Detail & Related papers (2022-12-22T14:31:48Z) - AI Explainability and Governance in Smart Energy Systems: A Review [0.36832029288386137]
Lack of explainability and governability of AI is a major concern for stakeholders.
This paper provides a review of AI explainability and governance in smart energy systems.
arXiv Detail & Related papers (2022-10-24T05:09:13Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.