論文の概要: Deep Learning for Options Trading: An End-To-End Approach
- arxiv url: http://arxiv.org/abs/2407.21791v1
- Date: Wed, 31 Jul 2024 17:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:08:13.000259
- Title: Deep Learning for Options Trading: An End-To-End Approach
- Title(参考訳): オプション取引のためのディープラーニング: エンドツーエンドアプローチ
- Authors: Wee Ling Tan, Stephen Roberts, Stefan Zohren,
- Abstract要約: 我々は、高度にスケーラブルでデータ駆動の機械学習アルゴリズムを用いて、オプショントレーディング戦略に新しいアプローチを導入する。
エンドツーエンドアプローチでトレーニングしたディープラーニングモデルは、既存のルールベースのトレーディング戦略よりも、リスク調整されたパフォーマンスが大幅に向上していることを示します。
- 参考スコア(独自算出の注目度): 7.148312060227716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel approach to options trading strategies using a highly scalable and data-driven machine learning algorithm. In contrast to traditional approaches that often require specifications of underlying market dynamics or assumptions on an option pricing model, our models depart fundamentally from the need for these prerequisites, directly learning non-trivial mappings from market data to optimal trading signals. Backtesting on more than a decade of option contracts for equities listed on the S&P 100, we demonstrate that deep learning models trained according to our end-to-end approach exhibit significant improvements in risk-adjusted performance over existing rules-based trading strategies. We find that incorporating turnover regularization into the models leads to further performance enhancements at prohibitively high levels of transaction costs.
- Abstract(参考訳): 我々は、高度にスケーラブルでデータ駆動の機械学習アルゴリズムを用いて、オプショントレーディング戦略に新しいアプローチを導入する。
オプション価格モデルに基礎となるマーケットダイナミクスや仮定の仕様を必要とする従来のアプローチとは対照的に、私たちのモデルは、市場データから最適なトレーディングシグナルへの非自明なマッピングを直接学習することで、これらの前提条件の必要性から根本的に離れています。
S&P100に記載された株式オプション契約の10年以上を振り返って、私たちのエンドツーエンドアプローチで訓練されたディープラーニングモデルが、既存のルールベースのトレーディング戦略よりも、リスク調整されたパフォーマンスを著しく改善していることを示します。
ターンオーバー規則化をモデルに組み込むことで,取引コストの極めて高いレベルにおいて,さらなるパフォーマンス向上が期待できる。
関連論文リスト
- DeepClair: Utilizing Market Forecasts for Effective Portfolio Selection [29.43115584494825]
ポートフォリオ選択のための新しいフレームワークであるDeepClairを紹介します。
DeepClairは、トランスフォーマーベースの時系列予測モデルを活用して、市場のトレンドを予測する。
論文 参考訳(メタデータ) (2024-07-18T11:51:03Z) - Cost-Effective Proxy Reward Model Construction with On-Policy and Active Learning [70.22819290458581]
人間のフィードバックによる強化学習(RLHF)は、現在の大規模言語モデルパイプラインにおいて広く採用されているアプローチである。
提案手法では,(1)OODを回避するためのオン・ポリシー・クエリと,(2)プライオリティ・クエリの最も情報性の高いデータを選択するためのアクティブ・ラーニングという2つの重要なイノベーションを導入している。
論文 参考訳(メタデータ) (2024-07-02T10:09:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - An Ensemble Method of Deep Reinforcement Learning for Automated
Cryptocurrency Trading [16.78239969166596]
深層強化学習アルゴリズムにより訓練された貿易戦略の一般化性能を向上させるためのアンサンブル手法を提案する。
提案手法は, 深層強化学習戦略とパッシブ投資戦略のベンチマークと比較し, サンプル外性能を向上する。
論文 参考訳(メタデータ) (2023-07-27T04:00:09Z) - Data Cross-Segmentation for Improved Generalization in Reinforcement
Learning Based Algorithmic Trading [5.75899596101548]
本稿では,学習した予測モデルからの信号に基づいて処理を行う強化学習(RL)アルゴリズムを提案する。
われわれのアルゴリズムは、ブルサ・マレーシアの20年以上のエクイティデータに基づいてテストしている。
論文 参考訳(メタデータ) (2023-07-18T16:00:02Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Adaptive learning for financial markets mixing model-based and
model-free RL for volatility targeting [0.0]
モデルフリー強化学習は安定した環境において有意義な成果を上げてきたが、今日でも金融市場のような環境の変化に問題がある。
モデルフリーな深層強化学習により,様々なモデルベースアプローチを選択することで,この2つの手法のベストを組み合わせることを提案する。
論文 参考訳(メタデータ) (2021-04-19T19:20:22Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
本稿では,不完全な市場状態と注文実行のための最適な行動シーケンスとのギャップを埋める,新たなユニバーサル取引ポリシー最適化フレームワークを提案する。
本研究の枠組みは,完全情報を持つ託宣教師による実践的最適実行に向けて,共通政策の学習を指導する上で有効であることを示す。
論文 参考訳(メタデータ) (2021-01-28T05:52:18Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
論文 参考訳(メタデータ) (2020-05-27T21:28:43Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。