論文の概要: Post-Quantum Cryptography (PQC) Network Instrument: Measuring PQC Adoption Rates and Identifying Migration Pathways
- arxiv url: http://arxiv.org/abs/2408.00054v1
- Date: Wed, 31 Jul 2024 16:48:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 00:27:00.052433
- Title: Post-Quantum Cryptography (PQC) Network Instrument: Measuring PQC Adoption Rates and Identifying Migration Pathways
- Title(参考訳): ポスト量子暗号(PQC)ネットワーク機器:PQC導入率の測定とマイグレーションパスの同定
- Authors: Jakub Sowa, Bach Hoang, Advaith Yeluru, Steven Qie, Anita Nikolich, Ravishankar Iyer, Phuong Cao,
- Abstract要約: 現実的な量子コンピュータは、今後数十年で古典的な暗号化を破るでしょう。
量子後暗号を採用する主な課題は、アルゴリズムの複雑さとハードウェア/ソフトウェア/ネットワークの実装である。
これは、全国規模のスーパーコンピュータセンターとFABRICテストベッドにおけるPQC導入の大規模測定としては初めてである。
- 参考スコア(独自算出の注目度): 0.3402843082585062
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The problem of adopting quantum-resistant cryptographic network protocols or post-quantum cryptography (PQC) is critically important to democratizing quantum computing. The problem is urgent because practical quantum computers will break classical encryption in the next few decades. Past encrypted data has already been collected and can be decrypted in the near future. The main challenges of adopting post-quantum cryptography lie in algorithmic complexity and hardware/software/network implementation. The grand question of how existing cyberinfrastructure will support post-quantum cryptography remains unanswered. This paper describes: i) the design of a novel Post-Quantum Cryptography (PQC) network instrument placed at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign and a part of the FABRIC testbed; ii) the latest results on PQC adoption rate across a wide spectrum of network protocols (Secure Shell -- SSH, Transport Layer Security -- TLS, etc.); iii) the current state of PQC implementation in key scientific applications (e.g., OpenSSH or SciTokens); iv) the challenges of being quantum-resistant; and v) discussion of potential novel attacks. This is the first large-scale measurement of PQC adoption at national-scale supercomputing centers and FABRIC testbeds. Our results show that only OpenSSH and Google Chrome have successfully implemented PQC and achieved an initial adoption rate of 0.029\% (6,044 out of 20,556,816) for OpenSSH connections at NCSA coming from major Internet Service Providers or Autonomous Systems (ASes) such as OARNET, GTT, Google Fiber Webpass (U.S.) and Uppsala Lans Landsting (Sweden), with an overall increasing adoption rate year-over-year for 2023-2024. Our analyses identify pathways to migrate current applications to be quantum-resistant.
- Abstract(参考訳): 量子耐性暗号ネットワークプロトコルやポスト量子暗号(PQC)を採用する問題は、量子コンピューティングの民主化において極めて重要である。
現実的な量子コンピュータは今後数十年で古典的な暗号化を破ることになるため、この問題は緊急である。
過去の暗号化されたデータは、既に収集されており、近い将来に復号化できる。
量子後暗号を採用する主な課題は、アルゴリズムの複雑さとハードウェア/ソフトウェア/ネットワークの実装である。
既存のサイバーインフラ構造がポスト量子暗号をサポートするのかという大きな疑問は、まだ答えられていない。
本論文は以下のとおりである。
一 イリノイ大学アーバナ・シャンペーン校の国立計算応用センター(NCSA)に置かれる新規な量子暗号(PQC)ネットワーク機器及びFABRICテストベッドの一部の設計
二 幅広いネットワークプロトコル(セキュアシェル、SSH、トランスポート層セキュリティ、TLS等)におけるPQC採用率に関する最新の結果。
三 重要な科学的応用(例えば、OpenSSH又はSciTokens)におけるPQCの実施の現状
四 量子抵抗の課題、及び
五 新規攻撃の可能性についての議論
これは、全国規模のスーパーコンピュータセンターとFABRICテストベッドにおけるPQC導入の大規模測定としては初めてである。
OARNET, GTT, Google Fiber Webpass (U.S.) や Uppsala Lans Landsting (Sweden) といった主要なインターネットサービスプロバイダや自律システム(AS)から来るNCSAにおけるOpenSSHコネクションの初回採用率は0.029\% (20,556,816のうち6,044 %) に達し,2023-2024 年で全体の採用率が増加した。
解析により、電流アプリケーションを量子抵抗に移行する経路を同定する。
関連論文リスト
- The Impact of Quantum-Safe Cryptography (QSC) on Website Response [0.0]
2024年、国立標準技術研究所は量子セーフ暗号(QSC)標準を公表した。
本研究の目的は,NISTの量子抵抗暗号アルゴリズムがWebサイト応答時間に与える影響を評価することである。
その結果、QSCアルゴリズムは、通常のネットワーク条件下での古典的アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-10-30T03:44:46Z) - PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud [7.87660609586004]
クラウドコンピューティングは量子機械学習(QML)においてデータ漏洩のリスクが高い
本稿では,QMLのデータセキュリティをQパラダイム,すなわちPristiQで保護するための協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-20T22:03:32Z) - Post-Quantum Cryptography for Internet of Things: A Survey on Performance and Optimization [5.2804058417428275]
量子後暗号化とシグネチャの計算は困難である。
PQCは、合理的に軽量なIoTでも実現可能だが、最適化の提案には標準化が欠如しているようだ。
今後の研究は,ポストクォータ時代のIoTへの効率的かつ安全なマイグレーションを実現するために,コーディネートを求めることを提案する。
論文 参考訳(メタデータ) (2024-01-31T01:47:04Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
量子セキュア直接通信(QSDC)は、確実に安全であり、量子コンピューティングの脅威を克服する。
関連するポイントツーポイント通信プロトコルについて詳述し、情報の保護と送信方法を示す。
論文 参考訳(メタデータ) (2023-11-23T12:40:47Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - Simulation of Networked Quantum Computing on Encrypted Data [0.0]
暗号技術は、量子コンピューティングパワーの安全な遠隔利用のために開発されなければならない。
シミュレーションプラットフォームLIQ$Ui|rangle上で古典的にテストされた,そのようなプロトコルのシミュレーションを提案する。
論文 参考訳(メタデータ) (2022-12-25T20:02:53Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - First demonstration of a post-quantum key-exchange with a nanosatellite [58.579141089302816]
我々は、Kyber-512を用いて、低軌道上のナノサテライトSpooQy-1と量子後鍵交換を示す。
この実装は、SWaP制約ナノサテライト上での量子セーフ認証鍵交換および暗号化システムの実現可能性を示す。
論文 参考訳(メタデータ) (2022-06-02T10:45:27Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
我々は、セキュアな古典的リピータと量子セキュアな直接通信原理を組み合わせた量子ネットワークを考案する。
これらのネットワークでは、量子耐性アルゴリズムから引き出された暗号文を、ノードに沿ってQSDCを用いて送信する。
我々は,セキュアな古典的リピータに基づくハイブリッド量子ネットワークの実証実験を行った。
論文 参考訳(メタデータ) (2022-02-08T03:24:06Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Anti-Forging Quantum Data: Cryptographic Verification of Quantum
Computational Power [1.9737117321211988]
量子コンピューティングは、インターネットを通じて量子コンピューティングのパワーを体験するための人気のモデルとして生まれつつある。
ユーザは、サーバから送信される出力文字列が本当に量子ハードウェアからのものであることを、どうやって確認できますか?
論文 参考訳(メタデータ) (2020-05-04T14:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。