論文の概要: Quantum circuit compilation with quantum computers
- arxiv url: http://arxiv.org/abs/2408.00077v2
- Date: Sun, 11 Aug 2024 13:55:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 20:13:45.420594
- Title: Quantum circuit compilation with quantum computers
- Title(参考訳): 量子コンピュータを用いた量子回路のコンパイル
- Authors: Davide Rattacaso, Daniel Jaschke, Marco Ballarin, Ilaria Siloi, Simone Montangero,
- Abstract要約: 本稿では,量子コンピュータによる計算を行うための量子アルゴリズムのクラスを紹介する。
提案手法の有効性をQuantumとSimulated Annealingベースのコンパイルを用いて実証する。
変換不変回路の場合、コンパイルの結果、入力回路のサイズが広範囲に増大する忠実性ゲインが得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compilation optimizes quantum algorithms performances on real-world quantum computers. To date, it is performed via classical optimization strategies. We introduce a class of quantum algorithms to perform compilation via quantum computers, paving the way for a quantum advantage in compilation. We demonstrate the effectiveness of this approach via Quantum and Simulated Annealing-based compilation: we successfully compile a Trotterized Hamiltonian simulation with up to 64 qubits and 64 time-steps and a Quantum Fourier Transform with up to 40 qubits and 771 time steps. We show that, for a translationally invariant circuit, the compilation results in a fidelity gain that grows extensively in the size of the input circuit, outperforming any local or quasi-local compilation approach.
- Abstract(参考訳): コンパイルは、現実世界の量子コンピュータ上での量子アルゴリズムのパフォーマンスを最適化する。
現在までに、古典的な最適化戦略によって行われている。
我々は、量子コンピュータによるコンパイルを行うための量子アルゴリズムのクラスを導入し、コンパイルにおける量子アドバンテージの道を開く。
我々は、最大64キュービットと64タイムステップのトロッター化ハミルトンシミュレーションと、最大40キュービットと71タイムステップの量子フーリエ変換のコンパイルに成功した。
変換不変回路では, 入力回路のサイズが広く増加し, 局所的あるいは準局所的なコンパイル手法よりも優れていることを示す。
関連論文リスト
- Multi-target quantum compilation algorithm [0.0]
量子コンパイルは、ターゲットのユニタリ演算を量子回路で表されるトレーニング可能なユニタリに変換するプロセスである。
我々は,複数の量子システムのシミュレーション性能と柔軟性を向上させるために,マルチターゲット量子コンパイルアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-07-01T06:47:24Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Dynamic quantum circuit compilation [11.550577505893367]
量子ハードウェアの最近の進歩は、中間回路の測定とリセットを導入し、測定量子ビットの再利用を可能にしている。
本稿では,静的量子回路を動的同値に変換するプロセスである動的量子回路コンパイルの体系的研究について述べる。
論文 参考訳(メタデータ) (2023-10-17T06:26:30Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Compiler Optimization for Quantum Computing Using Reinforcement Learning [3.610459670994051]
本稿では、最適化された量子回路コンパイルフローを開発するための強化学習フレームワークを提案する。
提案するフレームワークは、IBMのQiskitとQuantinuumのTKETからのコンパイルパスを選択できる。
これは、期待される忠実性に関して73%のケースで、両方のコンパイラを著しく上回っている。
論文 参考訳(メタデータ) (2022-12-08T19:00:01Z) - Quantum Circuit Compiler for a Shuttling-Based Trapped-Ion Quantum
Computer [26.47874938214435]
本稿では,シャットリング型トラップイオン量子プロセッサをターゲットとした量子回路の変換と最適化を行うコンパイラを提案する。
その結果,標準ピケットに比べて最大5.1因子,標準のカイスキートコンパイルに比べて最大2.2因子のゲート数を削減できることがわかった。
論文 参考訳(メタデータ) (2022-07-05T11:21:09Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Faster Schr\"odinger-style simulation of quantum circuits [2.0940228639403156]
GoogleとIBMによる超伝導量子コンピュータの最近のデモンストレーションは、量子アルゴリズムの新たな研究を加速させた。
我々は、レイヤシミュレーションアルゴリズムにおいて、スタンドアローンおよびビルディングブロックとして有用な量子回路のSchr"odingerスタイルのシミュレーションを前進させる。
論文 参考訳(メタデータ) (2020-08-01T08:47:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。