Approximating Rayleigh Scattering in Exoplanetary Atmospheres using Physics-informed Neural Networks (PINNs)
- URL: http://arxiv.org/abs/2408.00084v1
- Date: Wed, 31 Jul 2024 18:00:55 GMT
- Title: Approximating Rayleigh Scattering in Exoplanetary Atmospheres using Physics-informed Neural Networks (PINNs)
- Authors: David Dahlbüdding, Karan Molaverdikhani, Barbara Ercolano, Tommaso Grassi,
- Abstract summary: This research introduces an innovative application of physics-informed neural networks (PINNs) to tackle the challenges of radiative transfer (RT) modeling in exoplanetary atmospheres.
Our approach utilizes PINNs, noted for their ability to incorporate the governing differential equations of RT directly into their loss function.
We focus on RT in transiting exoplanet atmospheres using a simplified 1D isothermal model with pressure-dependent coefficients for absorption and Rayleigh scattering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research introduces an innovative application of physics-informed neural networks (PINNs) to tackle the intricate challenges of radiative transfer (RT) modeling in exoplanetary atmospheres, with a special focus on efficiently handling scattering phenomena. Traditional RT models often simplify scattering as absorption, leading to inaccuracies. Our approach utilizes PINNs, noted for their ability to incorporate the governing differential equations of RT directly into their loss function, thus offering a more precise yet potentially fast modeling technique. The core of our method involves the development of a parameterized PINN tailored for a modified RT equation, enhancing its adaptability to various atmospheric scenarios. We focus on RT in transiting exoplanet atmospheres using a simplified 1D isothermal model with pressure-dependent coefficients for absorption and Rayleigh scattering. In scenarios of pure absorption, the PINN demonstrates its effectiveness in predicting transmission spectra for diverse absorption profiles. For Rayleigh scattering, the network successfully computes the RT equation, addressing both direct and diffuse stellar light components. While our preliminary results with simplified models are promising, indicating the potential of PINNs in improving RT calculations, we acknowledge the errors stemming from our approximations as well as the challenges in applying this technique to more complex atmospheric conditions. Specifically, extending our approach to atmospheres with intricate temperature-pressure profiles and varying scattering properties, such as those introduced by clouds and hazes, remains a significant area for future development.
Related papers
- Neural Message Passing Induced by Energy-Constrained Diffusion [79.9193447649011]
We propose an energy-constrained diffusion model as a principled interpretable framework for understanding the mechanism of MPNNs.
We show that the new model can yield promising performance for cases where the data structures are observed (as a graph), partially observed or completely unobserved.
arXiv Detail & Related papers (2024-09-13T17:54:41Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Predicting the Radiation Field of Molecular Clouds using Denoising
Diffusion Probabilistic Models [2.2215308271891403]
We employ deep learning techniques to predict the interstellar radiation field (ISRF) strength based on three-band dust emission at 4.5 um, 24 um, and 250 um.
Our model robustly predicts radiation feedback distribution, even in complex, poorly constrained ISRF environments.
arXiv Detail & Related papers (2023-09-11T20:28:43Z) - Algorithmic Hallucinations of Near-Surface Winds: Statistical
Downscaling with Generative Adversarial Networks to Convection-Permitting
Scales [0.0]
We focus on convolutional neural network-based Generative Adversarial Networks (GANs)
Our GANs are conditioned on low-resolution (LR) inputs to generate high-resolution (HR) surface winds emulating Weather Research and Forecasting model simulations over North America.
Our study builds upon current SR-based statistical downscaling by experimenting with a novel frequency-separation (FS) approach from the computer vision field.
arXiv Detail & Related papers (2023-02-17T06:29:12Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
We introduce new techniques to formulate the problem as solving Fokker-Planck equation in a lower-dimensional latent space.
Our proposed model consists of latent-distribution morphing, a generator and a parameterized Fokker-Planck kernel function.
arXiv Detail & Related papers (2021-05-10T17:42:01Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.