論文の概要: Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
- arxiv url: http://arxiv.org/abs/2408.00160v1
- Date: Wed, 31 Jul 2024 21:06:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 22:16:07.680846
- Title: Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
- Title(参考訳): 生物樹を用いた拡散モデルの階層的条件付けによる種進化の研究
- Authors: Mridul Khurana, Arka Daw, M. Maruf, Josef C. Uyeda, Wasila Dahdul, Caleb Charpentier, Yasin Bakış, Henry L. Bart Jr., Paula M. Mabee, Hilmar Lapp, James P. Balhoff, Wei-Lun Chao, Charles Stewart, Tanya Berger-Wolf, Anuj Karpatne,
- Abstract要約: 階層型埋め込み(HIER-Embeds)で表される系統的知識を持つ拡散モデルを条件付けるフレームワークであるPhylo-Diffusionを紹介する。
また,Phylo-Diffusionの埋め込み空間を摂動する2つの新しい実験を提案する。
私たちの研究は、生成モデルを用いて画像から直接進化的変化を可視化することで、進化生物学の新しい章も開きます。
- 参考スコア(独自算出の注目度): 19.899467048643363
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A central problem in biology is to understand how organisms evolve and adapt to their environment by acquiring variations in the observable characteristics or traits of species across the tree of life. With the growing availability of large-scale image repositories in biology and recent advances in generative modeling, there is an opportunity to accelerate the discovery of evolutionary traits automatically from images. Toward this goal, we introduce Phylo-Diffusion, a novel framework for conditioning diffusion models with phylogenetic knowledge represented in the form of HIERarchical Embeddings (HIER-Embeds). We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping, inspired by counterpart experiments of gene knockout and gene editing/swapping. Our work represents a novel methodological advance in generative modeling to structure the embedding space of diffusion models using tree-based knowledge. Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images. We empirically demonstrate the usefulness of Phylo-Diffusion in capturing meaningful trait variations for fishes and birds, revealing novel insights about the biological mechanisms of their evolution.
- Abstract(参考訳): 生物学の中心的な問題は、生物がどう進化して環境に適応するかを理解することである。
生物学における大規模画像レポジトリの利用可能化と、生成モデリングの最近の進歩により、画像からの進化的特徴の自動発見を加速する機会がある。
この目的に向けて, ヒエラルキ的埋め込み (HIER-Embeds) の形で表現された系統的知識を持つ拡散モデルを条件付ける新しいフレームワークであるPhylo-Diffusionを紹介する。
また,Phylo-Diffusionの組込み空間を摂動させる2つの新しい実験を提案する。
本研究は,木系知識を用いた拡散モデルの埋め込み空間を構築するための生成モデリングの方法論的進歩を示す。
私たちの研究は、生成モデルを用いて画像から直接進化的変化を可視化することで、進化生物学の新しい章も開きます。
魚類や鳥類の有意な形質変化を捉える上でのフィロ拡散の有用性を実証的に実証し,その進化の生物学的機構に関する新たな知見を明らかにした。
関連論文リスト
- Evolutionary Dispersal of Ecological Species via Multi-Agent Deep Reinforcement Learning [0.0]
本研究は,多エージェント強化学習(MARL)と深度Q-networks(DQN)を用いて,単一種と捕食者-捕食者の相互作用をシミュレートする。
我々のシミュレーションでは、進化的分散戦略を明らかにし、種分散機構の洞察を与え、伝統的な数学的モデルを検証する。
論文 参考訳(メタデータ) (2024-10-24T10:21:23Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images [0.7329200485567825]
PhenDiffは、実際の画像をある状態から別の状態に翻訳することで、細胞性表現型の変化を特定する。
薬物治療の低濃度の場合など,表現型の変化が見えない場合や見えない場合において,この手法を質的,定量的に検証する。
論文 参考訳(メタデータ) (2023-12-13T17:06:33Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
本稿では,系統学における2つの中核的問題に対処するための生成フローネットワーク(GFlowNets)の枠組みを紹介する。
GFlowNetsは複雑な構造をサンプリングするのに適しているため、木トポロジー上の多重モード後部分布を探索し、サンプリングするのに自然な選択である。
我々は, 実際のベンチマークデータセット上で, 様々な, 高品質な進化仮説を生成できることを実証した。
論文 参考訳(メタデータ) (2023-10-12T23:46:08Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Discovering Novel Biological Traits From Images Using Phylogeny-Guided
Neural Networks [10.372001949268636]
本稿では,特徴ラベルに依存しない画像から進化的特徴を直接発見するための新しい手法を提案する。
提案手法であるPhylo-NNは、生物の画像を量子化された特徴ベクトルの列にエンコードする。
本研究は,多くの下流タスクにおいて生物学的に有意義な結果を生み出すためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-06-05T20:22:05Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Epigenetic opportunities for Evolutionary Computation [0.0]
進化計算(Evolutionary Computation)は、複雑な最適化問題を解くために用いられる生物学的にインスパイアされたアルゴリズムのグループである。
遺伝的遺伝からインスピレーションを得る進化的アルゴリズムと、文化的遺伝からインスピレーションを得るSwarm Intelligenceアルゴリズムに分けることができる。
本稿では, 進化的拡張合成に基づく生物学的枠組みの下で, バイオインスパイアされたアルゴリズムを成功裏に分解する。
論文 参考訳(メタデータ) (2021-08-10T09:44:53Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
我々は、より深い畳み込みモデルを進化させるために、これまで提案されていた神経進化の枠組みを構築した。
異なる形状と大きさのカーネルを同一層内に共存させる畳み込み層配置を提案する。
提案したレイアウトにより、畳み込み層内の個々のカーネルのサイズと形状を、対応する新しい突然変異演算子で進化させることができる。
論文 参考訳(メタデータ) (2021-04-12T12:45:16Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
環境の複雑さが形態学的知能の進化を促進することを示す。
また、進化は速く学習する形態を素早く選択することを示した。
我々の実験は、ボールドウィン効果とモルフォロジーインテリジェンスの発生の両方の力学的基礎を示唆している。
論文 参考訳(メタデータ) (2021-02-03T18:58:31Z) - Evolution Is All You Need: Phylogenetic Augmentation for Contrastive
Learning [1.7188280334580197]
生物配列埋め込みの自己監視型表現学習は、下流タスクにおける計算リソースの制約を緩和する。
進化的系統的増補を用いた対比学習が表現学習の目的として利用できることを示す。
論文 参考訳(メタデータ) (2020-12-25T01:35:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。