Leveraging Machine Learning and Deep Learning Techniques for Improved Pathological Staging of Prostate Cancer
- URL: http://arxiv.org/abs/2502.09686v1
- Date: Thu, 13 Feb 2025 14:53:09 GMT
- Title: Leveraging Machine Learning and Deep Learning Techniques for Improved Pathological Staging of Prostate Cancer
- Authors: Raziehsadat Ghalamkarian, Marziehsadat Ghalamkarian, MortezaAli Ahmadi, Sayed Mohammad Ahmadi, Abolfazl Diyanat,
- Abstract summary: This study leverages machine learning and deep learning approaches, along with feature selection and extraction methods, to enhance PCa pathological staging predictions.
Gene expression profiles from 486 tumors were analyzed using advanced algorithms, including Random Forest (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGB), and Support Vector Machine (SVM)
The results reveal that the highest test F1-score, approximately 83%, was achieved by the Random Forest algorithm.
- Score: 0.4660328753262075
- License:
- Abstract: Prostate cancer (Pca) continues to be a leading cause of cancer-related mortality in men, and the limitations in precision of traditional diagnostic methods such as the Digital Rectal Exam (DRE), Prostate-Specific Antigen (PSA) testing, and biopsies underscore the critical importance of accurate staging detection in enhancing treatment outcomes and improving patient prognosis. This study leverages machine learning and deep learning approaches, along with feature selection and extraction methods, to enhance PCa pathological staging predictions using RNA sequencing data from The Cancer Genome Atlas (TCGA). Gene expression profiles from 486 tumors were analyzed using advanced algorithms, including Random Forest (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGB), and Support Vector Machine (SVM). The performance of the study is measured with respect to the F1-score, as well as precision and recall, all of which are calculated as weighted averages. The results reveal that the highest test F1-score, approximately 83%, was achieved by the Random Forest algorithm, followed by Logistic Regression at 80%, while both Extreme Gradient Boosting (XGB) and Support Vector Machine (SVM) scored around 79%. Furthermore, deep learning models with data augmentation achieved an accuracy of 71. 23%, while PCA-based dimensionality reduction reached an accuracy of 69.86%. This research highlights the potential of AI-driven approaches in clinical oncology, paving the way for more reliable diagnostic tools that can ultimately improve patient outcomes.
Related papers
- Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool [0.40205899806543505]
Deep-BCR-Auto is a deep learning-based computational pathology approach that predicts breast cancer recurrence risk.
Our methodology was validated on two independent cohorts.
Deep-BCR-Auto demonstrated robust performance in stratifying patients into low- and high-recurrence risk categories.
arXiv Detail & Related papers (2024-09-23T19:22:06Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Prognosis of COVID-19 using Artificial Intelligence: A Systematic Review and Meta-analysis [0.23221087157793407]
This study identifies, appraises and synthesizes published studies on the use of AI for the prognosis of COVID-19.
Several AI models and architectures were employed, such as the Siamense model, support vector machine, Random Forest, eXtreme Gradient Boosting, and convolutional neural networks.
The models achieved 71%, 88% and 67% sensitivity for mortality, severity assessment and need for ventilation, respectively.
arXiv Detail & Related papers (2024-08-01T00:33:32Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
We evaluate and compare the classification accuracy, precision, recall, and F-1 scores of five different machine learning methods.
XGBoost achieved the best model accuracy, which is 97%.
arXiv Detail & Related papers (2024-04-06T17:23:21Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis [1.1470070927586016]
We used interpretability techniques, such as the Global Surrogate (GS) method, the Individual Expectation (ICE) plots and the Conditional Shapley values (SV)
The best performance for breast cancer diagnosis was achieved by the proposed ENN (96.6% accuracy and 0.96 area under the ROC curve)
arXiv Detail & Related papers (2022-02-04T13:41:30Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.