論文の概要: A Prior Embedding-Driven Architecture for Long Distance Blind Iris Recognition
- arxiv url: http://arxiv.org/abs/2408.00210v1
- Date: Thu, 1 Aug 2024 00:40:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-04 22:04:56.506660
- Title: A Prior Embedding-Driven Architecture for Long Distance Blind Iris Recognition
- Title(参考訳): 長距離ブラインドアイリス認識のための先行埋め込み駆動型アーキテクチャ
- Authors: Qi Xiong, Xinman Zhang, Jun Shen,
- Abstract要約: 遠距離ブラインドアイリス認識のための埋め込み駆動型アーキテクチャを提案する。
われわれはまずアイリス画像復元ネットワークIris-PPRGANを提案した。
ブラインドアイリスのテクスチャを効果的に復元するために、Iris-PPRGANは、プリミティブデコーダとして使用されるジェネレーティブアドリアネットワーク(GAN)と、エンコーダとして使用されるDNNとを含む。
- 参考スコア(独自算出の注目度): 5.482786561272011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind iris images, which result from unknown degradation during the process of iris recognition at long distances, often lead to decreased iris recognition rates. Currently, little existing literature offers a solution to this problem. In response, we propose a prior embedding-driven architecture for long distance blind iris recognition. We first proposed a blind iris image restoration network called Iris-PPRGAN. To effectively restore the texture of the blind iris, Iris-PPRGAN includes a Generative Adversarial Network (GAN) used as a Prior Decoder, and a DNN used as the encoder. To extract iris features more efficiently, we then proposed a robust iris classifier by modifying the bottleneck module of InsightFace, which called Insight-Iris. A low-quality blind iris image is first restored by Iris-PPRGAN, then the restored iris image undergoes recognition via Insight-Iris. Experimental results on the public CASIA-Iris-distance dataset demonstrate that our proposed method significantly superior results to state-of-the-art blind iris restoration methods both quantitatively and qualitatively, Specifically, the recognition rate for long-distance blind iris images reaches 90% after processing with our methods, representing an improvement of approximately ten percentage points compared to images without restoration.
- Abstract(参考訳): ブラインド虹彩画像は、長距離の虹彩認識過程における未知の劣化により、しばしば虹彩認識率を低下させる。
現在、この問題の解決策を提供する文献は少ない。
そこで本研究では,遠距離目視虹彩認識のための埋め込み駆動型アーキテクチャを提案する。
われわれはまずアイリス画像復元ネットワークIris-PPRGANを提案した。
ブラインドアイリスのテクスチャを効果的に復元するために、Iris-PPRGANは、プリミティブデコーダとして使用されるジェネレーティブ・アドバイサル・ネットワーク(GAN)と、エンコーダとして使用されるDNNとを含む。
アイリスの特徴をより効率的に抽出するために,InsightFace のボトルネックモジュール Insight-Iris を改良し,ロバストなアイリス分類器を提案する。
低画質のアイリス像はIris-PPRGANによって最初に復元され、その後、回復したアイリス像はInsight-Irisを介して認識される。
パブリックなCASIA-Iris-Distanceデータセットによる実験結果から,提案手法は最先端のブラインドアイリス修復法に対して,定量的にも定性的にも有意に優れており,特に,長距離アイリス画像の認識率は処理後90%に達し,復元のない画像に比べて約10ポイント向上したことが示された。
関連論文リスト
- Generative Iris Prior Embedded Transformer for Iris Restoration [6.616142716765673]
組込みトランスモデル(Gformer)に先立って生成アイリスを提案する。
ターゲット画像の長距離依存性をモデル化するためにTransformerブロックをタップする。
第2に, 虹彩生成対向ネットワーク(GAN)を事前訓練し, 虹彩再生過程に虹彩特徴変調器を組み込む。
論文 参考訳(メタデータ) (2024-06-28T23:20:57Z) - Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation [0.0]
現代の虹彩認識のアプローチでは、深層学習を用いて虹彩の有効部分を眼の他の部分から切り離す。
本稿では,新しいデータ拡張手法を導入することにより,虹彩意味分節システムの精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2022-12-24T13:31:56Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
特に畳み込みニューラルネットワーク(CNN)を用いた単一画像超解像技術が出現している
本研究では, 虹彩認識のためのCNNを用いて, 単一画像の超解像を探索する。
彼らは、近赤外線虹彩画像の1.872のデータベースと携帯電話画像データベースのアプローチを検証する。
論文 参考訳(メタデータ) (2022-10-24T11:19:18Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
異なるディープラーニングアプローチを用いた畳み込みニューラルネットワーク(CNN)は、解像度の低い画像から現実的なテクスチャときめ細かい詳細を復元しようとする。
本研究は、虹彩認識環境における虹彩超解法(SR)に対するこれらのアプローチの実現可能性について検討する。
その結果,CNNと画像再投影は,認識システムの精度向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-10-20T09:46:23Z) - Segmentation-free Direct Iris Localization Networks [0.0]
本稿では,アイリス分割と円環嵌合を用いない効率的なアイリス局所化法を提案する。
低分解能アイリス画像から瞳孔と虹彩円を直接局所化できる虹彩局在化ネットワーク(ILN)を提案する。
また,瞳孔局所化の精度を向上させるために,瞳孔微細化ネットワーク(PRN)を導入する。
論文 参考訳(メタデータ) (2022-10-19T09:13:39Z) - Very Low-Resolution Iris Recognition Via Eigen-Patch Super-Resolution
and Matcher Fusion [69.53542497693086]
局所像パッチの固有変換に基づいて虹彩画像の再構成に用いる超解像アルゴリズムの評価を行った。
コントラストの強化は再現性を向上させるのに用いられ、マーカ融合は虹彩認識性能を改善するために採用されている。
論文 参考訳(メタデータ) (2022-10-18T11:25:19Z) - Fast Eye Detector Using Metric Learning for Iris on The Move [0.0]
本稿では,虹彩認識のための完全畳み込み型シームズネットワークに基づく高速眼球検出手法を提案する。
我々はCosFaceを損失関数として用いて、浅いネットワークでも左目と右目とを高い精度で識別する。
論文 参考訳(メタデータ) (2022-02-22T05:02:21Z) - Direct attacks using fake images in iris verification [59.68607707427014]
BioSecベースラインデータベースの実際のアイリスから偽アイリス画像のデータベースが作成されている。
本システムは直接攻撃に対して脆弱であることを示し,対策の重要性を指摘する。
論文 参考訳(メタデータ) (2021-10-30T05:01:06Z) - Toward Accurate and Reliable Iris Segmentation Using Uncertainty
Learning [96.72850130126294]
高精度で信頼性の高いアイリスセグメンテーションのためのアイリスU変換器(アイリスUsformer)を提案する。
IrisUsformerの精度向上のために,位置感応操作と再パッケージング変圧器ブロックを採用することで精巧に設計する。
IrisUsformer は SOTA IrisParseNet の 35% MAC を用いて, セグメンテーション精度の向上を図っている。
論文 参考訳(メタデータ) (2021-10-20T01:37:19Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
白内障は一般的な眼疾患であり、盲目や視力障害の主な原因の1つである。
近赤外画像を用いた白内障検出のための新しいアルゴリズムを提案する。
深層学習に基づくアイセグメンテーションとマルチタスクネットワーク分類ネットワークについて述べる。
論文 参考訳(メタデータ) (2021-10-06T08:10:28Z) - Segmentation-Aware and Adaptive Iris Recognition [24.125681602124477]
アイリス画像の品質は、アイリスマッチング精度を劣化させることが知られている。
眼周囲情報は本質的にそのような虹彩画像に埋め込まれており、そのような非理想的なシナリオ下で虹彩認識を支援するために利用することができる。
本稿では,より精度の低いアイリス認識のためのセグメンテーション支援適応フレームワークを提案する。
論文 参考訳(メタデータ) (2019-12-31T04:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。