Load Balancing in Federated Learning
- URL: http://arxiv.org/abs/2408.00217v1
- Date: Thu, 1 Aug 2024 00:56:36 GMT
- Title: Load Balancing in Federated Learning
- Authors: Alireza Javani, Zhiying Wang,
- Abstract summary: Federated Learning (FL) is a decentralized machine learning framework that enables learning from data distributed across multiple remote devices.
This paper proposes a load metric for scheduling policies based on the Age of Information.
We establish the optimal parameters of the Markov chain model and validate our approach through simulations.
- Score: 3.2999744336237384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a decentralized machine learning framework that enables learning from data distributed across multiple remote devices, enhancing communication efficiency and data privacy. Due to limited communication resources, a scheduling policy is often applied to select a subset of devices for participation in each FL round. The scheduling process confronts significant challenges due to the need for fair workload distribution, efficient resource utilization, scalability in environments with numerous edge devices, and statistically heterogeneous data across devices. This paper proposes a load metric for scheduling policies based on the Age of Information and addresses the above challenges by minimizing the load metric variance across the clients. Furthermore, a decentralized Markov scheduling policy is presented, that ensures a balanced workload distribution while eliminating the management overhead irrespective of the network size due to independent client decision-making. We establish the optimal parameters of the Markov chain model and validate our approach through simulations. The results demonstrate that reducing the load metric variance not only promotes fairness and improves operational efficiency, but also enhances the convergence rate of the learning models.
Related papers
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
Federated learning (FL) enables edge devices to collaboratively train a machine learning model without sharing their raw data.
However, deploying FL over mobile edge networks with constrained resources such as power, bandwidth, and suffers from high training latency and low model accuracy.
This paper investigates the optimal client scheduling and resource allocation for FL over mobile edge networks under resource constraints and uncertainty.
arXiv Detail & Related papers (2024-09-29T01:56:45Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Federated quantization-based self-supervised learning scheme (Fed-QSSL) designed to address heterogeneity in FL systems.
Fed-QSSL deploys de-quantization, weighted aggregation and re-quantization, ultimately creating models personalized to both data distribution and specific infrastructure of each client's device.
arXiv Detail & Related papers (2023-12-20T19:11:19Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - REFT: Resource-Efficient Federated Training Framework for Heterogeneous
and Resource-Constrained Environments [2.117841684082203]
Federated Learning (FL) plays a critical role in distributed systems.
FL emerges as a privacy-enforcing sub-domain of machine learning.
We propose "Resource-Efficient Federated Training Framework for Heterogeneous and Resource-Constrained Environments"
arXiv Detail & Related papers (2023-08-25T20:33:30Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.