論文の概要: ABC Align: Large Language Model Alignment for Safety & Accuracy
- arxiv url: http://arxiv.org/abs/2408.00307v1
- Date: Thu, 1 Aug 2024 06:06:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:35:40.865970
- Title: ABC Align: Large Language Model Alignment for Safety & Accuracy
- Title(参考訳): ABC Align: 安全性と正確性のための大規模言語モデルアライメント
- Authors: Gareth Seneque, Lap-Hang Ho, Ariel Kuperman, Nafise Erfanian Saeedi, Jeffrey Molendijk,
- Abstract要約: 大規模言語モデル(LLM)のための新しいアライメント手法ABC Alignを提案する。
合成データ生成、選好最適化、ポストトレーニングモデル量子化における最近のブレークスルーの上に構築された一連のデータとメソッドを組み合わせる。
我々の統一的なアプローチは、標準ベンチマークに対して測定されたように、バイアスを軽減し、推論能力を保ちながら精度を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alignment of Large Language Models (LLMs) remains an unsolved problem. Human preferences are highly distributed and can be captured at multiple levels of abstraction, from the individual to diverse populations. Organisational preferences, represented by standards and principles, are defined to mitigate reputational risk or meet legislative obligations. In this paper, we present ABC Align, a novel alignment methodology for LLMs that enables integration of the standards and preferences of a large media organisation into the LLM itself. We combine a set of data and methods that build on recent breakthroughs in synthetic data generation, preference optimisation, and post-training model quantisation. Our unified approach mitigates bias and improves accuracy, while preserving reasoning capability, as measured against standard benchmarks.
- Abstract(参考訳): 大規模言語モデルのアライメント(LLM)は未解決の問題である。
人間の嗜好は高度に分散しており、個体群から多様な個体群まで、様々な抽象レベルで捉えられる。
組織的嗜好は、基準と原則によって表され、評判のリスクを軽減するか、立法義務を満たすために定義される。
本稿では,ABC Alignについて述べる。ABC Alignは,大手メディア組織の標準と嗜好をLCM自体に統合するための,LCMの新しいアライメント手法である。
合成データ生成、選好最適化、ポストトレーニングモデル量子化における最近のブレークスルーの上に構築された一連のデータとメソッドを組み合わせる。
我々の統一的なアプローチは、標準ベンチマークに対して測定されたように、バイアスを軽減し、推論能力を保ちながら精度を向上させる。
関連論文リスト
- MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - LLM-CI: Assessing Contextual Integrity Norms in Language Models [1.1715858161748576]
大規模言語モデル(LLM)は、社会的嗜好や規範を意図せずに符号化することができる。
これは、プロンプトの感度が$$$$小であることから特に困難である。
LLM-CIは、符号化された規範を評価するための最初のオープンソースフレームワークである。
論文 参考訳(メタデータ) (2024-09-05T17:50:31Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Exposing Privacy Gaps: Membership Inference Attack on Preference Data for LLM Alignment [8.028743532294532]
そこで我々は、PreMIAと呼ばれる嗜好データを分析するための新しい参照ベースアタックフレームワークを提案する。
PPOモデルと比較してDPOモデルの方がMIAに弱いという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-07-08T22:53:23Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Don't Forget Your Reward Values: Language Model Alignment via
Value-based Calibration [26.467379188463028]
そこで本稿では,textbfValue を用いた textbfCalitextbfBration (VCB) 手法を提案する。
実験の結果,VCBはAIアシスタントや要約データセット上の既存のアライメント手法を上回ることがわかった。
論文 参考訳(メタデータ) (2024-02-25T08:45:10Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
リニアアライメントは、言語モデルと人間の好みを1つの推論ステップで整列する新しいアルゴリズムである。
一般的な選好データセットとパーソナライズされた選好データセットの実験により、線形アライメントはLLMアライメントの性能と効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-01-21T10:46:23Z) - Large Language Model (LLM) Bias Index -- LLMBI [0.0]
LLMBI(Large Language Model Bias Index)は、大規模言語モデル(LLM)に固有のバイアスを定量化し、対処するための先駆的なアプローチである。
年齢,性別,人種的偏見に限らず,多次元の偏見を取り入れた複合スコアリングシステムを用いたLLMBIの定式化を行った。
OpenAIのAPIからの応答を用いた実証分析では,バイアス検出の代表的な方法として,高度な感情分析を採用している。
論文 参考訳(メタデータ) (2023-12-22T15:38:13Z) - Personalisation within bounds: A risk taxonomy and policy framework for
the alignment of large language models with personalised feedback [11.895749982167375]
大規模言語モデル(LLM)は、幅広いタスクのコンテンツを生成するために使用され、今後数年でより多くの聴衆にリーチするように設定されている。
これにより、モデルが人間の好みと一致し、安全でない、不正確な、有害なアウトプットを発生させないことを保証する必要性が強まる。
マイクロレベルの嗜好学習プロセスを通じてLLMをパーソナライズすると、各ユーザとの整合性が良くなるモデルが得られる。
論文 参考訳(メタデータ) (2023-03-09T17:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。