Exploiting Preferences in Loss Functions for Sequential Recommendation via Weak Transitivity
- URL: http://arxiv.org/abs/2408.00326v1
- Date: Thu, 1 Aug 2024 06:55:19 GMT
- Title: Exploiting Preferences in Loss Functions for Sequential Recommendation via Weak Transitivity
- Authors: Hyunsoo Chung, Jungtaek Kim, Hyungeun Jo, Hyungwon Choi,
- Abstract summary: A choice of optimization objective is immensely pivotal in the design of a recommender system.
We propose a novel method that extends original objectives to explicitly leverage the different levels of preferences as relative orders between their scores.
- Score: 4.7894654945375175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A choice of optimization objective is immensely pivotal in the design of a recommender system as it affects the general modeling process of a user's intent from previous interactions. Existing approaches mainly adhere to three categories of loss functions: pairwise, pointwise, and setwise loss functions. Despite their effectiveness, a critical and common drawback of such objectives is viewing the next observed item as a unique positive while considering all remaining items equally negative. Such a binary label assignment is generally limited to assuring a higher recommendation score of the positive item, neglecting potential structures induced by varying preferences between other unobserved items. To alleviate this issue, we propose a novel method that extends original objectives to explicitly leverage the different levels of preferences as relative orders between their scores. Finally, we demonstrate the superior performance of our method compared to baseline objectives.
Related papers
- Controllable Preference Optimization: Toward Controllable Multi-Objective Alignment [103.12563033438715]
Alignment in artificial intelligence pursues consistency between model responses and human preferences as well as values.
Existing alignment techniques are mostly unidirectional, leading to suboptimal trade-offs and poor flexibility over various objectives.
We introduce controllable preference optimization (CPO), which explicitly specifies preference scores for different objectives.
arXiv Detail & Related papers (2024-02-29T12:12:30Z) - Improving One-class Recommendation with Multi-tasking on Various
Preference Intensities [1.8416014644193064]
In one-class recommendation, it's required to make recommendations based on users' implicit feedback.
We propose a multi-tasking framework taking various preference intensities of each signal from implicit feedback into consideration.
Our method performs better than state-of-the-art methods by a large margin on three large-scale real-world benchmark datasets.
arXiv Detail & Related papers (2024-01-18T18:59:55Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
We propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework.
AUR consists of a new uncertainty estimator along with a normal recommender model.
As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty.
arXiv Detail & Related papers (2022-09-22T04:32:51Z) - Determinantal Point Process Likelihoods for Sequential Recommendation [12.206748373325972]
We propose two new loss functions based on the Determinantal Point Process (DPP) likelihood, that can be adaptively applied to estimate the subsequent item or items.
Experimental results using the proposed loss functions on three real-world datasets show marked improvements over state-of-the-art sequential recommendation methods in both quality and diversity metrics.
arXiv Detail & Related papers (2022-04-25T11:20:10Z) - Inferring Lexicographically-Ordered Rewards from Preferences [82.42854687952115]
This paper proposes a method for inferring multi-objective reward-based representations of an agent's observed preferences.
We model the agent's priorities over different objectives as entering lexicographically, so that objectives with lower priorities matter only when the agent is indifferent with respect to objectives with higher priorities.
arXiv Detail & Related papers (2022-02-21T12:01:41Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
We present a novel unified model to segment salient instances and infer relative saliency rank order.
A novel loss function is also proposed to effectively train the saliency ranking branch.
experimental results demonstrate that our proposed model is more effective than previous methods.
arXiv Detail & Related papers (2021-07-08T13:10:42Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
In this paper, we explore the unique characteristics of the implicit feedback and propose Set2setRank framework for recommendation.
Our proposed framework is model-agnostic and can be easily applied to most recommendation prediction approaches.
arXiv Detail & Related papers (2021-05-16T08:06:22Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.