論文の概要: IN-Sight: Interactive Navigation through Sight
- arxiv url: http://arxiv.org/abs/2408.00343v2
- Date: Mon, 12 Aug 2024 10:19:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 20:13:45.417914
- Title: IN-Sight: Interactive Navigation through Sight
- Title(参考訳): IN-Sight: 視線によるインタラクティブナビゲーション
- Authors: Philipp Schoch, Fan Yang, Yuntao Ma, Stefan Leutenegger, Marco Hutter, Quentin Leboutet,
- Abstract要約: IN-Sightは自己監督型パスプランニングの新しいアプローチである。
可逆性のスコアを計算し、セマンティックマップに組み込む。
障害物を正確に回避するために、IN-Sightはローカルプランナーを使用している。
- 参考スコア(独自算出の注目度): 20.184155117341497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current visual navigation systems often treat the environment as static, lacking the ability to adaptively interact with obstacles. This limitation leads to navigation failure when encountering unavoidable obstructions. In response, we introduce IN-Sight, a novel approach to self-supervised path planning, enabling more effective navigation strategies through interaction with obstacles. Utilizing RGB-D observations, IN-Sight calculates traversability scores and incorporates them into a semantic map, facilitating long-range path planning in complex, maze-like environments. To precisely navigate around obstacles, IN-Sight employs a local planner, trained imperatively on a differentiable costmap using representation learning techniques. The entire framework undergoes end-to-end training within the state-of-the-art photorealistic Intel SPEAR Simulator. We validate the effectiveness of IN-Sight through extensive benchmarking in a variety of simulated scenarios and ablation studies. Moreover, we demonstrate the system's real-world applicability with zero-shot sim-to-real transfer, deploying our planner on the legged robot platform ANYmal, showcasing its practical potential for interactive navigation in real environments.
- Abstract(参考訳): 現在の視覚ナビゲーションシステムは、しばしば環境を静的として扱い、障害物と適応的に相互作用する能力が欠如している。
この制限は、避けられない障害に遭遇する際のナビゲーション障害を引き起こす。
In-Sightは、自己教師付き経路計画の新しいアプローチであり、障害物との相互作用を通じてより効果的なナビゲーション戦略を実現する。
RGB-Dの観測を利用して、IN-Sightは移動可能性スコアを計算し、それらを意味マップに組み込むことで、複雑な迷路のような環境での長距離経路計画を容易にする。
障害物を正確にナビゲートするために、IN-Sightはローカルプランナーを使用し、表現学習技術を用いて異なるコストマップを命令的に訓練する。
このフレームワークは、最先端のフォトリアリスティックなIntel SPEARシミュレーター内でエンドツーエンドのトレーニングを行っている。
様々なシミュレーションシナリオとアブレーション研究において,IN-Sightの有効性を広範囲なベンチマークにより検証した。
さらに,ゼロショットシミュレートによる実世界の応用性を実証し,ロボットプラットフォームであるANYmalにプランナーを配置し,実環境における対話型ナビゲーションの実現可能性を示す。
関連論文リスト
- TOP-Nav: Legged Navigation Integrating Terrain, Obstacle and Proprioception Estimation [5.484041860401147]
TOP-Navは、包括的パスプランナーとTerran認識、Obstacle回避、クローズループプロプライオセプションを統合した、新しい脚付きナビゲーションフレームワークである。
そこで,TOP-Navは,従来の知識の分布を超えた地形や乱れをロボットが扱えるように,オープンワールドナビゲーションを実現する。
論文 参考訳(メタデータ) (2024-04-23T17:42:45Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
エージェントの自我中心のビューとセマンティックマップを対比してナビゲーション固有の視覚表現学習法を提案する。
Ego$2$-Map学習は、オブジェクト、構造、遷移などのコンパクトでリッチな情報を、ナビゲーションのためのエージェントのエゴセントリックな表現に転送する。
論文 参考訳(メタデータ) (2023-07-23T14:01:05Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object
Navigation [75.13546386761153]
我々は,新しいゼロショットオブジェクトナビゲーション手法であるExploration with Soft Commonsense constraints (ESC)を提案する。
ESCは、事前訓練されたモデルのコモンセンス知識を、ナビゲーション経験のないオープンワールドオブジェクトナビゲーションに転送する。
MP3D, HM3D, RoboTHORのベンチマーク実験により, ESC法はベースラインよりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2023-01-30T18:37:32Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
反応ナビゲーションと経路計画のソフトウェアを組み込んだ視覚補綴用拡張現実ナビゲーションシステムを提案する。
対象を地図上に配置し、対象の軌道を計画し、対象に示し、障害なく再計画する。
その結果,目標を達成するための時間と距離を減らし,障害物衝突の回数を大幅に減らし,航法性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-30T09:41:40Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
視覚的目標達成のための学習に基づくナビゲーションシステムを提案する。
提案手法は,我々がvingと呼ぶシステムが,目標条件強化学習のための提案手法を上回っていることを示す。
我々は、ラストマイル配送や倉庫検査など、現実の多くのアプリケーションでViNGを実演する。
論文 参考訳(メタデータ) (2020-12-17T18:22:32Z) - On Embodied Visual Navigation in Real Environments Through Habitat [20.630139085937586]
ディープラーニングに基づくビジュアルナビゲーションモデルは、大量の視覚的観察に基づいてトレーニングされた場合、効果的なポリシーを学ぶことができる。
この制限に対処するため、仮想環境における視覚ナビゲーションポリシーを効率的に訓練するためのシミュレーションプラットフォームがいくつか提案されている。
本研究では,実世界の航法ピソードを走らせることなく,実世界の観測における航法方針の訓練と評価を効果的に行うことができることを示す。
論文 参考訳(メタデータ) (2020-10-26T09:19:07Z) - Robot Navigation in Constrained Pedestrian Environments using
Reinforcement Learning [32.454250811667904]
歩行者のまわりをスムーズに移動することは、人間環境に展開する移動ロボットに必要な能力である。
移動歩行者の存在に動的に適応できる政策を学習するための強化学習に基づくアプローチを提案する。
2つの実環境の3D再構成に学習方針の移転を示す。
論文 参考訳(メタデータ) (2020-10-16T19:40:08Z) - Embodied Visual Navigation with Automatic Curriculum Learning in Real
Environments [20.017277077448924]
NavACLは、ナビゲーションタスクに適した自動カリキュラム学習の方法である。
NavACLを用いて訓練した深層強化学習剤は、均一サンプリングで訓練した最先端エージェントよりも有意に優れていた。
我々のエージェントは、未知の乱雑な屋内環境から、RGB画像のみを使用して意味的に特定されたターゲットへ移動することができる。
論文 参考訳(メタデータ) (2020-09-11T13:28:26Z) - Learning to Move with Affordance Maps [57.198806691838364]
物理的な空間を自律的に探索し、ナビゲートする能力は、事実上あらゆる移動型自律エージェントの基本的な要件である。
従来のSLAMベースの探索とナビゲーションのアプローチは、主にシーン幾何学の活用に重点を置いている。
学習可能な余剰マップは探索と航法の両方において従来のアプローチの強化に利用でき、性能が大幅に向上することを示します。
論文 参考訳(メタデータ) (2020-01-08T04:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。