Learned Compression of Point Cloud Geometry and Attributes in a Single Model through Multimodal Rate-Control
- URL: http://arxiv.org/abs/2408.00599v1
- Date: Thu, 1 Aug 2024 14:31:06 GMT
- Title: Learned Compression of Point Cloud Geometry and Attributes in a Single Model through Multimodal Rate-Control
- Authors: Michael Rudolph, Aron Riemenschneider, Amr Rizk,
- Abstract summary: We learn joint compression of geometry and attributes using a single, adaptive autoencoder model.
Our evaluation shows comparable performance to state-of-the-art compression methods for geometry and attributes.
- Score: 2.7077560296908416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud compression is essential to experience volumetric multimedia as it drastically reduces the required streaming data rates. Point attributes, specifically colors, extend the challenge of lossy compression beyond geometric representation to achieving joint reconstruction of texture and geometry. State-of-the-art methods separate geometry and attributes to compress them individually. This comes at a computational cost, requiring an encoder and a decoder for each modality. Additionally, as attribute compression methods require the same geometry for encoding and decoding, the encoder emulates the decoder-side geometry reconstruction as an input step to project and compress the attributes. In this work, we propose to learn joint compression of geometry and attributes using a single, adaptive autoencoder model, embedding both modalities into a unified latent space which is then entropy encoded. Key to the technique is to replace the search for trade-offs between rate, attribute quality and geometry quality, through conditioning the model on the desired qualities of both modalities, bypassing the need for training model ensembles. To differentiate important point cloud regions during encoding or to allow view-dependent compression for user-centered streaming, conditioning is pointwise, which allows for local quality and rate variation. Our evaluation shows comparable performance to state-of-the-art compression methods for geometry and attributes, while reducing complexity compared to related compression methods.
Related papers
- Point Cloud Compression with Bits-back Coding [32.9521748764196]
This paper specializes in using a deep learning-based probabilistic model to estimate the Shannon's entropy of the point cloud information.
Once the entropy of the point cloud dataset is estimated, we use the learned CVAE model to compress the geometric attributes of the point clouds.
The novelty of our method with bits-back coding specializes in utilizing the learned latent variable model of the CVAE to compress the point cloud data.
arXiv Detail & Related papers (2024-10-09T06:34:48Z) - End-to-end learned Lossy Dynamic Point Cloud Attribute Compression [5.717288278431968]
This study introduces an end-to-end learned dynamic lossy attribute coding approach.
We employ a context model that leverage previous latent space in conjunction with an auto-regressive context model for encoding the latent tensor into a bitstream.
arXiv Detail & Related papers (2024-08-20T09:06:59Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
We leverage the human geometric prior in geometry redundancy removal of point clouds.
We can envisage high-resolution human point clouds as a combination of geometric priors and structural deviations.
The proposed framework can operate in a play-and-plug fashion with existing learning based point cloud compression methods.
arXiv Detail & Related papers (2023-05-02T10:35:20Z) - Deep probabilistic model for lossless scalable point cloud attribute
compression [2.2559617939136505]
We build an end-to-end point cloud attribute coding method (MNeT) that progressively projects the attributes onto multiscale latent spaces.
We validate our method on a set of point clouds from MVUB and MPEG and show that our method outperforms recently proposed methods and on par with the latest G-PCC version 14.
arXiv Detail & Related papers (2023-03-11T23:39:30Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - SoftPool++: An Encoder-Decoder Network for Point Cloud Completion [93.54286830844134]
We propose a novel convolutional operator for the task of point cloud completion.
The proposed operator does not require any max-pooling or voxelization operation.
We show that our approach achieves state-of-the-art performance in shape completion at low and high resolutions.
arXiv Detail & Related papers (2022-05-08T15:31:36Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Patch-Based Deep Autoencoder for Point Cloud Geometry Compression [8.44208490359453]
We propose a patch-based compression process using deep learning.
We divide the point cloud into patches and compress each patch independently.
In the decoding process, we finally assemble the decompressed patches into a complete point cloud.
arXiv Detail & Related papers (2021-10-18T08:59:57Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
We propose a multiscale-to-end learning framework which hierarchically reconstructs the 3D Point Cloud Geometry.
The framework is developed on top of a sparse convolution based autoencoder for point cloud compression and reconstruction.
arXiv Detail & Related papers (2020-11-07T16:11:16Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.