End-to-end learned Lossy Dynamic Point Cloud Attribute Compression
- URL: http://arxiv.org/abs/2408.10665v1
- Date: Tue, 20 Aug 2024 09:06:59 GMT
- Title: End-to-end learned Lossy Dynamic Point Cloud Attribute Compression
- Authors: Dat Thanh Nguyen, Daniel Zieger, Marc Stamminger, Andre Kaup,
- Abstract summary: This study introduces an end-to-end learned dynamic lossy attribute coding approach.
We employ a context model that leverage previous latent space in conjunction with an auto-regressive context model for encoding the latent tensor into a bitstream.
- Score: 5.717288278431968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in point cloud compression have primarily emphasized geometry compression while comparatively fewer efforts have been dedicated to attribute compression. This study introduces an end-to-end learned dynamic lossy attribute coding approach, utilizing an efficient high-dimensional convolution to capture extensive inter-point dependencies. This enables the efficient projection of attribute features into latent variables. Subsequently, we employ a context model that leverage previous latent space in conjunction with an auto-regressive context model for encoding the latent tensor into a bitstream. Evaluation of our method on widely utilized point cloud datasets from the MPEG and Microsoft demonstrates its superior performance compared to the core attribute compression module Region-Adaptive Hierarchical Transform method from MPEG Geometry Point Cloud Compression with 38.1% Bjontegaard Delta-rate saving in average while ensuring a low-complexity encoding/decoding.
Related papers
- Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need [53.584140947828004]
Language large model (LLM) with unprecedented intelligence is a general-purpose lossless compressor for various data modalities.
We propose P$2$-LLM, a next-pixel prediction-based LLM, which integrates various elaborated insights and methodologies.
Experiments on benchmark datasets demonstrate that P$2$-LLM can beat SOTA classical and learned codecs.
arXiv Detail & Related papers (2024-11-19T12:15:40Z) - Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds [18.244200436103156]
We propose an efficient attention-based method for lossy compression of point cloud attributes leveraging on an autoencoder architecture.
Experiments show that our method achieves an average improvement of 1.15 dB and 2.13 dB in BD-PSNR of Y channel and YUV channel, respectively.
arXiv Detail & Related papers (2024-10-23T12:32:21Z) - Point Cloud Compression with Bits-back Coding [32.9521748764196]
This paper specializes in using a deep learning-based probabilistic model to estimate the Shannon's entropy of the point cloud information.
Once the entropy of the point cloud dataset is estimated, we use the learned CVAE model to compress the geometric attributes of the point clouds.
The novelty of our method with bits-back coding specializes in utilizing the learned latent variable model of the CVAE to compress the point cloud data.
arXiv Detail & Related papers (2024-10-09T06:34:48Z) - SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
We propose an end-to-end compression method for dense point clouds.
The proposed method combines a frequency sampling module, an adaptive scale feature extraction module with geometry assistance, and a global hyperprior entropy model.
arXiv Detail & Related papers (2024-09-16T13:59:43Z) - Learned Compression of Point Cloud Geometry and Attributes in a Single Model through Multimodal Rate-Control [2.7077560296908416]
We learn joint compression of geometry and attributes using a single, adaptive autoencoder model.
Our evaluation shows comparable performance to state-of-the-art compression methods for geometry and attributes.
arXiv Detail & Related papers (2024-08-01T14:31:06Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
We leverage the human geometric prior in geometry redundancy removal of point clouds.
We can envisage high-resolution human point clouds as a combination of geometric priors and structural deviations.
The proposed framework can operate in a play-and-plug fashion with existing learning based point cloud compression methods.
arXiv Detail & Related papers (2023-05-02T10:35:20Z) - Deep probabilistic model for lossless scalable point cloud attribute
compression [2.2559617939136505]
We build an end-to-end point cloud attribute coding method (MNeT) that progressively projects the attributes onto multiscale latent spaces.
We validate our method on a set of point clouds from MVUB and MPEG and show that our method outperforms recently proposed methods and on par with the latest G-PCC version 14.
arXiv Detail & Related papers (2023-03-11T23:39:30Z) - ECM-OPCC: Efficient Context Model for Octree-based Point Cloud
Compression [6.509720419113212]
We propose a sufficient yet efficient context model and design an efficient deep learning for point clouds.
Specifically, we first propose a window-constrained multi-group coding strategy to exploit the autoregressive context.
We also propose a dual transformer architecture to utilize the dependency of current node on its ancestors and siblings.
arXiv Detail & Related papers (2022-11-20T09:20:32Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.