Enhancing Ethereum Fraud Detection via Generative and Contrastive Self-supervision
- URL: http://arxiv.org/abs/2408.00641v1
- Date: Thu, 1 Aug 2024 15:30:43 GMT
- Title: Enhancing Ethereum Fraud Detection via Generative and Contrastive Self-supervision
- Authors: Chenxiang Jin, Jiajun Zhou, Chenxuan Xie, Shanqing Yu, Qi Xuan, Xiaoniu Yang,
- Abstract summary: We present a dual self-supervision enhanced fraud detection framework, named Meta-IFD.
This framework initially introduces a generative self-supervision mechanism to augment the interaction features of accounts, followed by a contrastive self-supervision mechanism to differentiate various behavior patterns.
The source code will be released on GitHub soon.
- Score: 4.497245600377944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rampant fraudulent activities on Ethereum hinder the healthy development of the blockchain ecosystem, necessitating the reinforcement of regulations. However, multiple imbalances involving account interaction frequencies and interaction types in the Ethereum transaction environment pose significant challenges to data mining-based fraud detection research. To address this, we first propose the concept of meta-interactions to refine interaction behaviors in Ethereum, and based on this, we present a dual self-supervision enhanced Ethereum fraud detection framework, named Meta-IFD. This framework initially introduces a generative self-supervision mechanism to augment the interaction features of accounts, followed by a contrastive self-supervision mechanism to differentiate various behavior patterns, and ultimately characterizes the behavioral representations of accounts and mines potential fraud risks through multi-view interaction feature learning. Extensive experiments on real Ethereum datasets demonstrate the effectiveness and superiority of our framework in detecting common Ethereum fraud behaviors such as Ponzi schemes and phishing scams. Additionally, the generative module can effectively alleviate the interaction distribution imbalance in Ethereum data, while the contrastive module significantly enhances the framework's ability to distinguish different behavior patterns. The source code will be released on GitHub soon.
Related papers
- Remeasuring the Arbitrage and Sandwich Attacks of Maximal Extractable Value in Ethereum [7.381773144616746]
Maximal Extractable Value (MEV) drives the prosperity of the blockchain ecosystem.
We propose a profitability identification algorithm to identify MEV activities on our collected largest-ever dataset.
We have characterized the overall landscape of the MEV ecosystem, the impact the private transaction architectures bring in, and the adoption of back-running mechanisms.
arXiv Detail & Related papers (2024-05-28T08:17:15Z) - Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoin has become one of the primary global platforms for cryptocurrency, playing an important role in promoting the diversification of the financial ecosystem.
Previous regulatory methods usually detect malicious accounts through feature engineering or large-scale transaction graph mining.
We propose an Transaction Graph Compression method named TGC4Eth, which assists malicious detection by lightweighting both features and topology of the transaction graph.
arXiv Detail & Related papers (2024-05-14T02:21:20Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
We explore the great potential of a pre-trained vision Transformer (ViT) to bridge the vast distribution gap between two modalities.
We propose a mask modeling strategy that randomly masks a specific modality of some tokens to enforce the interaction between tokens from different modalities interacting proactively.
Experiments demonstrate that our plug-and-play training augmentation techniques can significantly boost state-of-the-art one-stream and two trackersstream to a large extent in terms of both tracking precision and success rate.
arXiv Detail & Related papers (2023-07-09T08:58:47Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection [29.518411879700263]
BERT4ETH is a pre-trained Transformer account representation extractor for detecting various fraud behaviors.
BERT4ETH features the superior modeling capability of Transformer to capture the dynamic sequential patterns inherent in transactions.
Our empirical evaluation demonstrates that BERT4ETH outperforms state-of-the-art methods with significant enhancements in terms of the phishing account detection and de-anonymization tasks.
arXiv Detail & Related papers (2023-03-29T20:30:52Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - Time-aware Metapath Feature Augmentation for Ponzi Detection in Ethereum [5.934595786654019]
Ponzi schemes and phishing scams severely endanger decentralized finance.
Existing graph-based abnormal behavior detection methods on blockchain usually focus on constructing homogeneous transaction graphs.
We introduce Time-aware Metapath Feature Augmentation (TMFAug) as a plug-and-play module to capture the real metapath-based transaction patterns.
arXiv Detail & Related papers (2022-10-30T15:31:19Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.