論文の概要: Enhancing Multistep Prediction of Multivariate Market Indices Using Weighted Optical Reservoir Computing
- arxiv url: http://arxiv.org/abs/2408.00652v1
- Date: Thu, 1 Aug 2024 15:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:06:59.383527
- Title: Enhancing Multistep Prediction of Multivariate Market Indices Using Weighted Optical Reservoir Computing
- Title(参考訳): 軽量光貯留層計算による多変量市場指標の多段階予測
- Authors: Fang Wang, Ting Bu, Yuping Huang,
- Abstract要約: 重み付き光貯水池計算システムを用いて,革新的な株価指数予測手法を提案し,実験的に実証した。
我々は、マクロ経済データと技術指標を組み合わせた基本的な市場データを構築し、株式市場のより広い振る舞いを捉える。
- 参考スコア(独自算出の注目度): 3.4442963880376203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and experimentally demonstrate an innovative stock index prediction method using a weighted optical reservoir computing system. We construct fundamental market data combined with macroeconomic data and technical indicators to capture the broader behavior of the stock market. Our approach shows significant higher performance than state-of-the-art methods such as linear regression, decision trees, and neural network architectures including long short-term memory. It captures well the market's high volatility and nonlinear behaviors despite limited data, demonstrating great potential for real-time, parallel, multi-dimensional data processing and predictions.
- Abstract(参考訳): 重み付き光貯水池計算システムを用いて,革新的な株価指数予測手法を提案し,実験的に実証した。
我々は、マクロ経済データと技術指標を組み合わせた基本的な市場データを構築し、株式市場のより広い振る舞いを捉える。
提案手法は,線形回帰,決定木,長期記憶を含むニューラルネットワークアーキテクチャなどの最先端手法よりも高い性能を示す。
限られたデータにもかかわらず、市場の高ボラティリティと非線形な振る舞いをうまく捉え、リアルタイム、並列、多次元のデータ処理と予測に大きな可能性を秘めている。
関連論文リスト
- MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU [15.232546605091818]
本稿では,多頭部クロスアテンション機構と改良型GRUに基づくストック予測モデルMCI-GRUを提案する。
4つの主要株式市場での実験では、提案手法は複数の指標でSOTA技術を上回っている。
論文 参考訳(メタデータ) (2024-09-25T14:37:49Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction [20.574163667057476]
我々は、株式市場予測の精度を高めるために、世論の豊かな情報源であるソーシャルメディアデータの力を活用している。
我々は、感情分析、マクロ経済指標、検索エンジンデータ、過去の価格をマルチアテンション深層学習モデルに組み込むアプローチを開拓した。
市場の動向とボラティリティの予測のために,私たちによって特別にキュレーションされたデータセットを用いて,提案モデルの最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-28T13:31:39Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - ARISE: ApeRIodic SEmi-parametric Process for Efficient Markets without
Periodogram and Gaussianity Assumptions [91.3755431537592]
我々は、効率的な市場を調査するためのApeRI-miodic(ARISE)プロセスを提案する。
ARISEプロセスは、いくつかの既知のプロセスの無限サムとして定式化され、周期スペクトル推定を用いる。
実際に,実世界の市場の効率性を明らかにするために,ARISE関数を適用した。
論文 参考訳(メタデータ) (2021-11-08T03:36:06Z) - A Scalable Inference Method For Large Dynamic Economic Systems [19.757929782329892]
本稿では,時間変化パラメータ自動回帰モデルを組み込む新しい変分ベイズ推論手法を提案する。
我々のモデルは、価格、個々のアクターのトランザクション、トランザクションフローの分析、価格の動きを含む大規模なブロックチェーンデータセットに適用されます。
我々は、機械学習アーキテクチャの助けを借りて、フォワードモデルに非線形性を導入することで、シンプルな状態空間モデリングをさらに改善する。
論文 参考訳(メタデータ) (2021-10-27T10:52:17Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。