論文の概要: An effect analysis of the balancing techniques on the counterfactual explanations of student success prediction models
- arxiv url: http://arxiv.org/abs/2408.00676v1
- Date: Thu, 1 Aug 2024 16:19:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:06:59.348640
- Title: An effect analysis of the balancing techniques on the counterfactual explanations of student success prediction models
- Title(参考訳): 学生成功予測モデルの反実的説明に対するバランス手法の効果分析
- Authors: Mustafa Cavus, Jakub Kuzilek,
- Abstract要約: 学習分析における主要な研究方向の1つは、様々な機械学習手法を用いて学習者の成功を予測することである。
いくつかのカウンターファクト生成手法は、多くの可能性を秘めているが、その特徴は効果的に動作可能で、因果的でなければならない。
本稿では, 対実説明法, 多目的対実説明法, 最近対実説明法など, 一般的に用いられている対実生成法の有効性を考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past decade, we have experienced a massive boom in the usage of digital solutions in higher education. Due to this boom, large amounts of data have enabled advanced data analysis methods to support learners and examine learning processes. One of the dominant research directions in learning analytics is predictive modeling of learners' success using various machine learning methods. To build learners' and teachers' trust in such methods and systems, exploring the methods and methodologies that enable relevant stakeholders to deeply understand the underlying machine-learning models is necessary. In this context, counterfactual explanations from explainable machine learning tools are promising. Several counterfactual generation methods hold much promise, but the features must be actionable and causal to be effective. Thus, obtaining which counterfactual generation method suits the student success prediction models in terms of desiderata, stability, and robustness is essential. Although a few studies have been published in recent years on the use of counterfactual explanations in educational sciences, they have yet to discuss which counterfactual generation method is more suitable for this problem. This paper analyzed the effectiveness of commonly used counterfactual generation methods, such as WhatIf Counterfactual Explanations, Multi-Objective Counterfactual Explanations, and Nearest Instance Counterfactual Explanations after balancing. This contribution presents a case study using the Open University Learning Analytics dataset to demonstrate the practical usefulness of counterfactual explanations. The results illustrate the method's effectiveness and describe concrete steps that could be taken to alter the model's prediction.
- Abstract(参考訳): 過去10年間、私たちは高等教育におけるデジタルソリューションの利用で大きなブームを経験してきました。
このブームにより、大量のデータにより、学習者を支援し学習プロセスを調べるための高度なデータ分析手法が実現された。
学習分析における主要な研究方向の1つは、様々な機械学習手法を用いて学習者の成功を予測することである。
このような方法やシステムに対する学習者や教師の信頼を構築するためには、関連するステークホルダーが基礎となる機械学習モデルを深く理解するための方法や方法論を探求する必要がある。
この文脈では、説明可能な機械学習ツールからの反実的な説明が有望である。
いくつかのカウンターファクト生成手法は、多くの可能性を秘めているが、その特徴は効果的に動作可能で、因果的でなければならない。
したがって、デシダータ、安定性、堅牢性の観点から学生の成功予測モデルにどの反事実生成法が適合するかが不可欠である。
近年, 教育科学における対実的説明の活用に関する研究がいくつか発表されているが, どの対実的説明法がこの問題に適しているかは議論されていない。
本稿では, 対物的説明法, 対物的説明法, 対物的説明法, 対物的説明法など, 一般的な対物的説明法の有効性を考察した。
このコントリビューションは,Open University Learning Analyticsデータセットを用いて,対実的説明の実用性を示すケーススタディである。
その結果,提案手法の有効性が示され,モデルの予測を変えるための具体的な手順が説明された。
関連論文リスト
- Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
論文 参考訳(メタデータ) (2024-10-02T10:03:29Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
XAIとモデリング技術の不整合は、これらの説明可能性アプローチの有効性に疑念を投げかけるという望ましくない効果をもたらす可能性がある。
我々はXAI, SHapley Additive exPlanations (Shap) において, 一般的なモデルに依存しない手法に対する系統的摂動解析を提案する。
我々は、一般的な機械学習とディープラーニングの手法のスイートと、静的ケースホールドで生成された説明の正確さを定量化するためのメトリクスの中で、動的推論の設定において、相対的な特徴重要度を生成するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-05-30T16:04:35Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
自己指導型学習手法の安定性のメカニズムを説明するための枠組みを提供する。
我々は,BYOL,SWAV,SimSiam,Barlow Twins,DINOなどの非コントラスト技術であるSimCLRの動作メカニズムについて議論する。
私たちは異なる仮説を定式化し、Imagenet100データセットを使ってそれらをテストします。
論文 参考訳(メタデータ) (2024-02-22T20:36:24Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Explainability in Machine Learning: a Pedagogical Perspective [9.393988089692947]
我々は、学習過程を構造化して、学生や研究者に機械学習の知識をより多く与える方法について、教育学的視点を提供する。
各種不透明かつ透明な機械学習モデルの利点と欠点について論じる。
我々はまた、学生がどんな機械学習アプリケーションと並行して説明可能性を使うことを学ぶのを助けるために、潜在的な課題を構築する方法についても論じる。
論文 参考訳(メタデータ) (2022-02-21T16:15:57Z) - Graph-based Ensemble Machine Learning for Student Performance Prediction [0.7874708385247353]
本研究では,単一の機械学習手法の安定性を向上させるために,グラフベースのアンサンブル機械学習手法を提案する。
私たちのモデルは、予測精度が最大14.8%向上する従来の機械学習アルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2021-12-15T05:19:46Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
機械学習の手法は、敏感な社会的文脈でますます適用されつつある。
本研究の主な目的は2つある。
まず、これらの課題を公開し、関連性のある新しい説明方法の使用にどのように影響するか。
次に、関連するアプリケーションドメインで説明メソッドを実装する際に直面するような課題を軽減する一連の戦略を提示します。
論文 参考訳(メタデータ) (2021-04-09T01:54:58Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。