DARE: Diverse Visual Question Answering with Robustness Evaluation
- URL: http://arxiv.org/abs/2409.18023v1
- Date: Thu, 26 Sep 2024 16:31:50 GMT
- Title: DARE: Diverse Visual Question Answering with Robustness Evaluation
- Authors: Hannah Sterz, Jonas Pfeiffer, Ivan Vulić,
- Abstract summary: Vision Language Models (VLMs) extend remarkable capabilities of text-only large language models and vision-only models.
They struggle with a number of crucial vision-language (VL) reasoning abilities such as counting and spatial reasoning.
We introduce DARE, Diverse Visual Question Answering with Robustness Evaluation.
- Score: 16.87867803628065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision Language Models (VLMs) extend remarkable capabilities of text-only large language models and vision-only models, and are able to learn from and process multi-modal vision-text input. While modern VLMs perform well on a number of standard image classification and image-text matching tasks, they still struggle with a number of crucial vision-language (VL) reasoning abilities such as counting and spatial reasoning. Moreover, while they might be very brittle to small variations in instructions and/or evaluation protocols, existing benchmarks fail to evaluate their robustness (or rather the lack of it). In order to couple challenging VL scenarios with comprehensive robustness evaluation, we introduce DARE, Diverse Visual Question Answering with Robustness Evaluation, a carefully created and curated multiple-choice VQA benchmark. DARE evaluates VLM performance on five diverse categories and includes four robustness-oriented evaluations based on the variations of: prompts, the subsets of answer options, the output format and the number of correct answers. Among a spectrum of other findings, we report that state-of-the-art VLMs still struggle with questions in most categories and are unable to consistently deliver their peak performance across the tested robustness evaluations. The worst case performance across the subsets of options is up to 34% below the performance in the standard case. The robustness of the open-source VLMs such as LLaVA 1.6 and Idefics2 cannot match the closed-source models such as GPT-4 and Gemini, but even the latter remain very brittle to different variations.
Related papers
- Multimodal RewardBench: Holistic Evaluation of Reward Models for Vision Language Models [82.92771279118888]
We introduce Multimodal RewardBench, an expert-annotated benchmark for evaluating multimodal reward models.
Our dataset comprises 5,211 annotated (prompt, chosen response, rejected response) triplets collected from various vision-language models.
We find that even the top-performing models, Gemini 1.5 Pro and Claude 3.5 Sonnet, achieve only 72% overall accuracy.
arXiv Detail & Related papers (2025-02-20T01:48:13Z) - DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical Reasoning Robustness of Vision Language Models [19.787224412654872]
We introduce DynaMath, a dynamic visual math benchmark designed for in-depth assessment of Vision-Language Models (VLMs)
DynaMath includes 501 high-quality, multi-topic seed questions, each represented as a Python program.
Our results show that the worst-case model accuracy, defined as the percentage of correctly answered seed questions in all 10 variants, is significantly lower than the average-case accuracy.
arXiv Detail & Related papers (2024-10-29T17:29:19Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [65.92331309449015]
We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability.
Through an extensive evaluation of nine popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - AlignMMBench: Evaluating Chinese Multimodal Alignment in Large Vision-Language Models [34.843603169616486]
We introduce AlignMMBench, a comprehensive alignment benchmark for emerging Chinese Vision-Language Models (VLMs)
This benchmark is meticulously curated from real-world scenarios and Chinese Internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios.
To facilitate the evaluation pipeline, we propose CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability.
arXiv Detail & Related papers (2024-06-13T16:30:14Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - How Many Unicorns Are in This Image? A Safety Evaluation Benchmark for
Vision LLMs [55.91371032213854]
This work focuses on the potential of Vision LLMs (VLLMs) in visual reasoning.
We introduce a comprehensive safety evaluation suite, covering both out-of-distribution (OOD) generalization and adversarial robustness.
arXiv Detail & Related papers (2023-11-27T18:59:42Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
We propose MMBench, a benchmark for assessing the multi-modal capabilities of vision-language models.
MMBench is meticulously curated with well-designed quality control schemes.
MMBench incorporates multiple-choice questions in both English and Chinese versions.
arXiv Detail & Related papers (2023-07-12T16:23:09Z) - Benchmarking Zero-Shot Recognition with Vision-Language Models: Challenges on Granularity and Specificity [45.86789047206224]
This paper presents novel benchmarks for evaluating vision-language models (VLMs) in zero-shot recognition.
Our benchmarks test VLMs' consistency in understanding concepts across semantic granularity levels and their response to varying text specificity.
Findings show that VLMs favor moderately fine-grained concepts and struggle with specificity, often misjudging texts that differ from their training data.
arXiv Detail & Related papers (2023-06-28T09:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.