論文の概要: CCSRP: Robust Pruning of Spiking Neural Networks through Cooperative Coevolution
- arxiv url: http://arxiv.org/abs/2408.00794v1
- Date: Thu, 18 Jul 2024 04:28:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 05:18:32.821211
- Title: CCSRP: Robust Pruning of Spiking Neural Networks through Cooperative Coevolution
- Title(参考訳): CCSRP: 協調的共進化によるスパイクニューラルネットワークのロバストプルーニング
- Authors: Zichen Song, Jiakang Li, Songning Lai, Sitan Huang,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、様々な動的視覚タスクにおいて有望であることを示しているが、現実的なデプロイメントの準備が整ったものは、リソース制限と安全クリティカルな設定に不可欠なコンパクト性と堅牢性を欠いていることが多い。
我々は,協調的共進化を基盤としたSNNの革新的な頑健な刈り取り法であるCSRPを提案する。
- 参考スコア(独自算出の注目度): 2.5388345537743056
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spiking neural networks (SNNs) have shown promise in various dynamic visual tasks, yet those ready for practical deployment often lack the compactness and robustness essential in resource-limited and safety-critical settings. Prior research has predominantly concentrated on enhancing the compactness or robustness of artificial neural networks through strategies like network pruning and adversarial training, with little exploration into similar methodologies for SNNs. Robust pruning of SNNs aims to reduce computational overhead while preserving both accuracy and robustness. Current robust pruning approaches generally necessitate expert knowledge and iterative experimentation to establish suitable pruning criteria or auxiliary modules, thus constraining their broader application. Concurrently, evolutionary algorithms (EAs) have been employed to automate the pruning of artificial neural networks, delivering remarkable outcomes yet overlooking the aspect of robustness. In this work, we propose CCSRP, an innovative robust pruning method for SNNs, underpinned by cooperative co-evolution. Robust pruning is articulated as a tri-objective optimization challenge, striving to balance accuracy, robustness, and compactness concurrently, resolved through a cooperative co-evolutionary pruning framework that independently prunes filters across layers using EAs. Our experiments on CIFAR-10 and SVHN demonstrate that CCSRP can match or exceed the performance of the latest methodologies.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、様々な動的視覚タスクにおいて有望であることを示しているが、現実的なデプロイメントの準備が整ったものは、リソース制限と安全クリティカルな設定に不可欠なコンパクト性と堅牢性を欠いていることが多い。
従来の研究は、ニューラルネットワークのコンパクト性やロバスト性の向上に主に集中しており、SNNの同様の手法をほとんど探求していない。
SNNのロバストプルーニングは、精度とロバスト性の両方を保ちながら計算オーバーヘッドを削減することを目的としている。
現在の堅牢なプルーニングアプローチは、一般的に、適切なプルーニング基準や補助モジュールを確立するために、専門家の知識と反復的な実験を必要とする。
同時に、進化的アルゴリズム(EA)は、人工知能ニューラルネットワークのプルーニングを自動化するために使われ、ロバストネスの側面を見越した素晴らしい結果をもたらしている。
本研究では,協調進化に支えられたSNNの革新的な頑健な刈り取り法であるCSRPを提案する。
ロバストプルーニングは三目的最適化の課題として具体化され、正確性、堅牢性、コンパクト性を同時にバランスさせ、EAを用いてフィルタを独立に分離する協調的共進化型プルーニングフレームワークによって解決される。
CIFAR-10 および SVHN を用いた実験により,CSRP が最新の手法の性能に適合または超えることを示した。
関連論文リスト
- Beyond Pruning Criteria: The Dominant Role of Fine-Tuning and Adaptive Ratios in Neural Network Robustness [7.742297876120561]
ディープニューラルネットワーク(DNN)は、画像認識や自然言語処理といったタスクに優れています。
従来のプルーニング手法は、微妙な摂動に耐えるネットワークの能力を損なう。
本稿では,プライドネットワークの性能決定要因として,従来の重み付け重み付けの重視に挑戦する。
論文 参考訳(メタデータ) (2024-10-19T18:35:52Z) - RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
スパイキングニューラルネットワーク(SNN)は、そのユニークな神経力学と低出力の性質により、広く注目を集めている。
以前の研究では、Poissonコーディングを持つSNNは、小規模データセット上のArtificial Neural Networks(ANN)よりも堅牢であることが実証されている。
この研究は理論上、SNNの固有の対向ロバスト性はポアソン符号に由来することを証明している。
論文 参考訳(メタデータ) (2024-07-29T15:26:15Z) - Towards Efficient Deep Spiking Neural Networks Construction with Spiking Activity based Pruning [17.454100169491497]
本稿では,Spking Channel Activity-based (SCA) network pruning frameworkという,畳み込みカーネルの動作レベルに基づく構造化プルーニング手法を提案する。
本手法は, 学習中の畳み込みカーネルの切断・再生によりネットワーク構造を動的に調整し, 現在の目標タスクへの適応性を高める。
論文 参考訳(メタデータ) (2024-06-03T07:44:37Z) - SPP-CNN: An Efficient Framework for Network Robustness Prediction [13.742495880357493]
本稿では,空間ピラミッドプール畳み込みニューラルネットワーク(SPP-CNN)のネットワークロバスト性予測のための効率的なフレームワークを開発する。
新しいフレームワークは、畳み込み層と完全に接続された層の間に空間ピラミッドプーリング層を設置し、CNNベースの予測アプローチにおける一般的なミスマッチ問題を克服する。
論文 参考訳(メタデータ) (2023-05-13T09:09:20Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - HYDRA: Pruning Adversarially Robust Neural Networks [58.061681100058316]
ディープラーニングは、敵対的攻撃に対する堅牢性の欠如と、大規模なニューラルネットワークサイズという、2つの大きな課題に直面している。
そこで本稿では,頑健なトレーニング目標を意識したプルーニング手法を提案し,トレーニング目標にプルーンへの接続を探索させる。
HYDRAと題する我々の手法は,最先端のベニグニグニグニグニグニとロバストな精度で圧縮されたネットワークを同時に実現できることを実証する。
論文 参考訳(メタデータ) (2020-02-24T19:54:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。