論文の概要: Data-Driven Traffic Simulation for an Intersection in a Metropolis
- arxiv url: http://arxiv.org/abs/2408.00943v1
- Date: Thu, 1 Aug 2024 22:25:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:46:34.185618
- Title: Data-Driven Traffic Simulation for an Intersection in a Metropolis
- Title(参考訳): 都市部における交差点におけるデータ駆動型交通シミュレーション
- Authors: Chengbo Zang, Mehmet Kerem Turkcan, Gil Zussman, Javad Ghaderi, Zoran Kostic,
- Abstract要約: 道路交差点における交通をモデル化するための新しいデータ駆動シミュレーション環境を提案する。
エージェントの相互作用と環境制約を学習するために,軌道予測モデルを訓練する。
シミュレーションは、自律的に、または、生成分布に条件付けされた明示的な人間の制御の下で実行することができる。
- 参考スコア(独自算出の注目度): 7.264786765085108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel data-driven simulation environment for modeling traffic in metropolitan street intersections. Using real-world tracking data collected over an extended period of time, we train trajectory forecasting models to learn agent interactions and environmental constraints that are difficult to capture conventionally. Trajectories of new agents are first coarsely generated by sampling from the spatial and temporal generative distributions, then refined using state-of-the-art trajectory forecasting models. The simulation can run either autonomously, or under explicit human control conditioned on the generative distributions. We present the experiments for a variety of model configurations. Under an iterative prediction scheme, the way-point-supervised TrajNet++ model obtained 0.36 Final Displacement Error (FDE) in 20 FPS on an NVIDIA A100 GPU.
- Abstract(参考訳): 本稿では,大都市交差点の交通をモデル化するための新しいデータ駆動シミュレーション環境を提案する。
長期にわたって収集された実世界の追跡データを用いて,従来の捕獲が困難であったエージェントの相互作用や環境制約を学習するために,軌道予測モデルを訓練する。
新たなエージェントの軌道は、まず空間的および時間的生成分布からサンプリングして粗大に生成され、続いて最先端の軌道予測モデルを用いて洗練される。
シミュレーションは、自律的に、または、生成分布に条件付けされた明示的な人間の制御の下で実行することができる。
各種モデル構成の実験について述べる。
反復予測スキームの下で、ウェイポイント制御されたTrajNet++モデルはNVIDIA A100 GPU上で20FPSで0.36ファイナル変位誤差(FDE)を得た。
関連論文リスト
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
本稿では,交通シナリオを生成する拡散に基づくDJINNを提案する。
我々のアプローチは、過去、現在、未来からのフレキシブルな状態観察のセットに基づいて、全てのエージェントの軌跡を共同で拡散させる。
本稿では,DJINNが様々な条件分布からの直接的テスト時間サンプリングを柔軟に行う方法を示す。
論文 参考訳(メタデータ) (2023-09-21T22:10:20Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Imagining The Road Ahead: Multi-Agent Trajectory Prediction via
Differentiable Simulation [17.953880589741438]
軌道予測のための完全微分可能なシミュレータを用いた深部生成モデルを開発した。
本稿では,標準ニューラルアーキテクチャと標準変動訓練目標を用いて,インタラクションデータセットの最先端の結果を得る。
Imagining the Road Ahead" からモデル ITRA と命名した。
論文 参考訳(メタデータ) (2021-04-22T17:48:08Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
本稿では,新しい2次元畳み込みモデルを導入し,歩行者軌道予測への新たなアプローチを提案する。
この新モデルはリカレントモデルより優れており、ETHとTrajNetデータセットの最先端の結果が得られる。
また,歩行者の位置と強力なデータ拡張手法を効果的に表現するシステムを提案する。
論文 参考訳(メタデータ) (2020-10-12T15:51:01Z) - TrajGAIL: Generating Urban Vehicle Trajectories using Generative
Adversarial Imitation Learning [9.01310450044549]
本研究は,都市自動車軌跡データの基礎的分布を学習するための生成的モデリング手法を提案する。
都市部における車両軌跡生成モデルは,トレーニングデータの基盤となる分布を学習することにより,トレーニングデータからより一般化することができる。
TrajGAILは、都市自動車軌道生成のための生成的対向的模倣学習フレームワークである。
論文 参考訳(メタデータ) (2020-07-28T13:17:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。