論文の概要: Automatic Extraction of Relationships among Motivations, Emotions and Actions from Natural Language Texts
- arxiv url: http://arxiv.org/abs/2408.00966v1
- Date: Fri, 2 Aug 2024 01:22:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:46:34.097472
- Title: Automatic Extraction of Relationships among Motivations, Emotions and Actions from Natural Language Texts
- Title(参考訳): 自然言語テキストからの動機・感情・行動の関係の自動抽出
- Authors: Fei Yang,
- Abstract要約: 有向非巡回グラフは、人間の性質を記述するように設計されている。
大きな言語モデルのパワーのため、アノテーションのリソースは必要ない。
92,990個の関係グラフが生成され、そのうち63%が論理的意味を持つ。
- 参考スコア(独自算出の注目度): 3.994730279677248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new graph-based framework to reveal relationships among motivations, emotions and actions explicitly given natural language texts. A directed acyclic graph is designed to describe human's nature. Nurture beliefs are incorporated to connect outside events and the human's nature graph. No annotation resources are required due to the power of large language models. Amazon Fine Foods Reviews dataset is used as corpus and food-related motivations are focused. Totally 92,990 relationship graphs are generated, of which 63% make logical sense. We make further analysis to investigate error types for optimization direction in future research.
- Abstract(参考訳): 本稿では,自然言語テキストを明示的に付与したモチベーション,感情,行動間の関係を明らかにするためのグラフベースの新しいフレームワークを提案する。
有向非巡回グラフは、人間の性質を記述するように設計されている。
ナーチュアの信念は、外部の出来事と人間の自然グラフを結びつけるために組み込まれている。
大きな言語モデルのパワーのため、アノテーションのリソースは必要ない。
Amazon Fine Foods Reviewsデータセットがコーパスとして使用され、食品関連のモチベーションが重視されている。
92,990個の関係グラフが生成され、そのうち63%が論理的意味を持つ。
今後の研究において、最適化方向のエラータイプについてさらなる分析を行う。
関連論文リスト
- When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
論文 参考訳(メタデータ) (2023-12-16T08:14:11Z) - Intrinsically motivated graph exploration using network theories of
human curiosity [71.2717061477241]
本稿では,人間の好奇心の2つの理論によるグラフ構造化データの探索手法を提案する。
提案した特徴を,グラフニューラルネットワークに基づく強化学習の報奨として利用する。
論文 参考訳(メタデータ) (2023-07-11T01:52:08Z) - Enhancing Dialogue Generation via Dynamic Graph Knowledge Aggregation [23.54754465832362]
従来のグラフニューラルネットワーク(GNN)では、グラフに渡すメッセージはテキストとは独立している。
このトレーニング体制は、グラフ知識とテキストの間に意味的なギャップをもたらす。
知識グラフ強化対話生成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T13:21:00Z) - Graph Learning and Its Advancements on Large Language Models: A Holistic Survey [37.01696685233113]
この調査は、グラフ学習と事前訓練された言語モデルの統合における最新の進歩に焦点を当てる。
グラフ構造の観点から現在の研究を解析し、グラフ学習における最新の応用、トレンド、課題について論じる。
論文 参考訳(メタデータ) (2022-12-17T22:05:07Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
エンドツーエンドで説明グラフを生成する事前学習言語モデルについて検討する。
本稿では,ノードとエッジの編集操作によるグラフ摂動の簡易かつ効果的な方法を提案する。
提案手法は,説明グラフの構造的精度と意味的精度を両立させる。
論文 参考訳(メタデータ) (2022-04-11T00:58:27Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
スタンス予測のための説明グラフ生成の新しい生成および構造化コモンセンスリゾニングタスク(および関連するデータセット)を紹介します。
具体的には、信念と議論が与えられた場合、モデルは、議論が信念を支持しているかどうかを予測し、予測されたスタンスに対する非自明で完全で曖昧な説明として機能する常識強化グラフを生成する必要がある。
グラフの83%は、様々な構造と推論深度を持つ外部のコモンセンスノードを含んでいる。
論文 参考訳(メタデータ) (2021-04-15T17:51:36Z) - Fusing Context Into Knowledge Graph for Commonsense Reasoning [21.33294077354958]
外部エンティティ記述を利用して,グラフエンティティのコンテキスト情報を提供する。
CommonsenseQAタスクでは、まず質問と選択から概念を抽出し、これらの概念の間に関連するトリプルを見つけます。
CommonsenseQAデータセットでは、80.7%(シングルモデル)と83.3%(アンサンブルモデル)の精度で最新の結果を達成しています。
論文 参考訳(メタデータ) (2020-12-09T00:57:49Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - A Scientific Information Extraction Dataset for Nature Inspired
Engineering [12.819150283584328]
本稿では,科学生物学テキストにおける中心概念間のドメインに依存しない関係を表現する,1500の手書き注釈文のデータセットについて述べる。
これらの関係の議論はマルチワード表現であり、非射影グラフを形成するためにフレーズを変更することで注釈付けされている。
このデータセットは、科学的生物学的文書の粗いタイピングを目的とした関係抽出アルゴリズムのトレーニングと評価を可能にする。
論文 参考訳(メタデータ) (2020-05-15T19:25:12Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。