論文の概要: On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents
- arxiv url: http://arxiv.org/abs/2408.00989v3
- Date: Tue, 28 Jan 2025 07:45:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:39:08.500397
- Title: On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents
- Title(参考訳): 故障剤を用いたLLM多エージェント協調のレジリエンスについて
- Authors: Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan, Michael R. Lyu, Maarten Sap,
- Abstract要約: 大規模言語モデルに基づくマルチエージェントシステムは、専門家エージェントの協力により、様々なタスクにまたがる優れた能力を示している。
しかし、不器用なエージェントや悪意のあるエージェントがシステム全体のパフォーマンスに与える影響は、まだ解明されていない。
本稿では, 種々のシステム構造の耐震性について考察する。
- 参考スコア(独自算出の注目度): 58.79302663733703
- License:
- Abstract: Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents, each focusing on a specific domain. However, the impact of clumsy or even malicious agents, i.e., those who frequently make errors in their tasks, on the overall performance of the system remains underexplored. This paper investigates: (1) What is the resilience of various system structures (e.g., A$\rightarrow$B$\rightarrow$C, A$\leftrightarrow$B$\leftrightarrow$C) under faulty agents, on different downstream tasks? (2) How can we increase system resilience to defend against these agents? To simulate faulty agents, we propose two approaches, AutoTransform and AutoInject, which introduce mistakes into the agents' responses. We select four downstream tasks, including code generation, math problems, translation, and text evaluation. Results suggest that the hierarchical structure, i.e., A$\rightarrow$(B$\leftrightarrow$C), exhibits superior resilience with the lowest performance drop of $9.2\%$, compared to $26.0\%$ and $31.2\%$ of other two structures. Additionally, we improve the system resilience with two methods, introducing a mechanism for each agent to challenge others' outputs, and an additional agent to review and correct messages. Our code and data are available at https://github.com/CUHK-ARISE/MAS-Resilience.
- Abstract(参考訳): 大規模言語モデルに基づくマルチエージェントシステムは、専門家エージェントの協力により、さまざまなタスクにまたがる優れた能力を示し、それぞれが特定のドメインに焦点を当てている。
しかし、不器用なエージェントや悪意のあるエージェント、すなわち、頻繁にタスクでエラーを犯すエージェントがシステム全体のパフォーマンスに与える影響は、まだ解明されていないままである。
本論文は,(1)下流タスクにおける種々のシステム構造(例えば, A$\rightarrow$B$\rightarrow$C, A$\leftrightarrow$B$\leftrightarrow$C)の弾力性について考察する。
2)これらのエージェントを防御するためにシステムレジリエンスを高めるにはどうすればいいのか?
故障エージェントをシミュレートするために,オートトランスフォームとオートインジェクションという2つの手法を提案する。
コード生成、数学問題、翻訳、テキスト評価を含む4つの下流タスクを選択します。
その結果、階層構造、すなわちA$\rightarrow$(B$\leftrightarrow$C)は、他の2つの構造のうち26.0\%$と31.2\%$に対して、9.2\%$の低い性能低下で優れたレジリエンスを示すことが示唆された。
さらに、システムのレジリエンスを2つの手法で改善し、各エージェントが他のエージェントの出力に挑戦するためのメカニズムを導入し、メッセージのレビューと修正のための追加エージェントを追加します。
私たちのコードとデータはhttps://github.com/CUHK-ARISE/MAS-Resilience.comで公開されています。
関連論文リスト
- Multi-Agent Stochastic Bandits Robust to Adversarial Corruptions [6.234292942334148]
敵の汚職に頑健なマルチエージェント協調学習アルゴリズムを提案する。
副産物として,本アルゴリズムは,単一エージェントと同種マルチエージェントの両方のシナリオに還元した場合の,最先端の後悔境界も改善する。
論文 参考訳(メタデータ) (2024-11-12T20:20:26Z) - Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks [39.084974125007165]
本稿では,複雑なタスクを解くための高性能なオープンソースエージェントシステムMagentic-Oneを紹介する。
Magentic-Oneでは、リードエージェントであるOrchestratorが進捗を追跡し、エラーからリカバリするための再計画を行うマルチエージェントアーキテクチャを使用している。
Magentic-Oneは3つの多様かつ挑戦的なエージェントベンチマークにおいて、最先端技術に対して統計的に競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-11-07T06:36:19Z) - A Troublemaker with Contagious Jailbreak Makes Chaos in Honest Towns [19.015202590038996]
エージェントの重要なコンポーネントはメモリであり、重要な情報を格納するが、ジェイルブレイク攻撃の影響を受けやすい。
既存の研究は主に単一エージェント攻撃と共有メモリ攻撃に焦点を当てている。
本稿では,大規模なマルチエージェント・マルチトポロジーテキストによる攻撃評価フレームワークであるTMCHTタスクを提案する。
論文 参考訳(メタデータ) (2024-10-21T16:21:24Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgentはマルチエージェントのシナジーによる統合デバッグのためのエンドツーエンドフレームワークである。
1.25$times$ 2.56$times$レポレベルのベンチマークであるDefects4Jのバグを修正した。
論文 参考訳(メタデータ) (2024-04-26T04:55:35Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
多エージェント協調(MAC)知覚は、単エージェント認識よりも敵攻撃に対して脆弱である。
MAC知覚に特異的な反応防御であるMADE(Malicious Agent Detection)を提案する。
我々は、ベンチマーク3DデータセットV2X-simとリアルタイムデータセットDAIR-V2Xで包括的な評価を行う。
論文 参考訳(メタデータ) (2023-10-18T11:36:42Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS)は、このようなマルチエージェントのsim-to-realギャップに対して堅牢なAIポリシーを学ぶためのフレームワークである。
ERMASは、エージェントリスク回避の変化に対して堅牢な税政策を学び、複雑な時間シミュレーションで最大15%社会福祉を改善する。
特に、ERMASは、エージェントリスク回避の変化に対して堅牢な税制政策を学び、複雑な時間シミュレーションにおいて、社会福祉を最大15%改善する。
論文 参考訳(メタデータ) (2021-06-10T04:32:20Z) - Regret Bounds for Decentralized Learning in Cooperative Multi-Agent
Dynamical Systems [3.9599054392856488]
マルチエージェント強化学習(MARL)における二次解析の課題
補助単エージェントLQ問題の構成に基づくMARLアルゴリズムを提案する。
我々のアルゴリズムは $tildeO(sqrtT)$ regret bound を提供する。
論文 参考訳(メタデータ) (2020-01-27T23:37:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。